Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Assess the 2008 Myanmar Cyclone Disaster

20.07.2009
Tropical cyclone Nargis made landfall in the Asian nation of Myanmar on May 2, 2008, causing the worst natural disaster in the country’s recorded history – with a death toll that may have exceeded 138,000. In the July 2009 issue of the journal Nature Geoscience, researchers report on a field survey done three months after the disaster to document the extent of the flooding and resulting damage.

The information – which may be the first reliable measurements of cyclone damage in the area – could lead to development of computer models for predicting how future storms may impact the geologically complex Ayeyarwady River delta. Those models could be the basis for planning, construction and education that would dramatically reduce future loss of life.

Among the findings of the study: the cyclone created a storm surge as much as five meters high – topped by two-meter storm waves – that together inundated areas as much as 50 kilometers inland. Fatality rates reached 80 percent in the hardest-hit villages, and an estimated 2.5 million people in the area lived in flood-prone homes less than 10 feet above sea level.

“The recorded high water marks serve as benchmarking for numerical models for the complex hydraulic response of the giant Ayeyarwady delta,” noted Hermann M. Fritz, an associate professor in the School of Civil and Environmental Engineering at the Georgia Institute of Technology. “Ongoing numerical simulations will allow us to determine flood zones and vulnerabilities for future cyclone scenarios. Based on those, evacuation scenarios and evaluation plans will be derived in collaboration with international partners and the Myanmar government.”

Already, a local non-governmental organization in the nation has developed a cyclone education program to raise awareness among residents, said Fritz, who was the only international scientist leading a team that surveyed 150 kilometers of the country’s coastline during a two-week period August 9-23, 2008.

“The aim of our project was to document the extent of the flooding and associated damage in the delta,” Fritz explained. “Field surveys in the immediate aftermath of major disasters focus on perishable data, which would otherwise be lost forever – such as infrastructure damage prior to repair and reconstruction.”

In the flood zone, for instance, the researchers searched for evidence of water marks on buildings, scars on trees and rafted debris as indicators of the maximum water height.

“Nargis washed away entire settlements, often without leaving a single structure standing, which forced us to focus on evidence left on large trees,” added Fritz, who has studied other natural disasters in Asia, Africa and the United States. “High water marks were photographed and located using global positioning system instruments. Transects from the nearest beach or waterway to the high water marks were recorded with a laser range finder.”

The survey team documented soil erosion of as much as one meter vertically and more than 100 meters horizontally. Highlighting the loss of land was a golden Buddhist stupa – originally constructed on dry land – that was left 150 meters offshore following the storm. Cyclone Nargis also scoured several drinking water wells, leaving them in the beach surf zone – and depriving survivors of safe water supplies.

While the storm surge and waves weren’t unusually high, the impact may have been worsened by the lack of nearby high ground for evacuation and loss of coastal mangrove forests that could have slowed the storm waves, Fritz said. Structures in the area were not built to survive cyclones, and there was no evacuation plan for the area – where people had no previous experience with such storms.

Those finding point to recommendations, including implementation of a cyclone education program, development of flood and vulnerability maps, construction of cyclone-safe buildings to serve as shelters, implementation of an improved warning system, and planning for evacuation, Fritz said. Partial reconstruction of the mangroves that had been removed for agriculture and fuel could also help protect the coastline.

The expedition’s itinerary was planned based on unofficial damage reports, physical storm and cyclone track data, satellite imagery, numerical model benchmark requirements and experience gained in surveying other disasters. The group traveled to the country by cargo boat and did most surveying from the vessel.

The research was in part supported by the Pyoe Pin Programme of the Department for International Development in the United Kingdom. The program is also sponsoring detailed modeling and a follow up study being done at Georgia Tech by Fritz and Christopher Blount, one of his doctoral students.

A Category 4 storm, Nargis was the eighth deadliest cyclone recorded worldwide. It is one of seven tropical cyclones generated in the Bay of Bengal that had death tolls in excess of 100,000. With damage estimated at more than $10 billion, the storm is the most destructive ever recorded in the Indian Ocean.

Fritz hopes the work done by the survey team – which also included Swe Thwin of the Myanmar Coastal Conservation Society and Moe Kyaw and Nyein Chan of the Mingalar Myanmar NGO – will ultimately help reduce the human cost of major cyclones.

“In the 21st century with modern communication and all that has been learned about cyclones in the Bay of Bengal, there is no need for 138,000 people to be killed by a storm like this,” Fritz said. “With adequate planning, education and shelters, it should be possible to reduce fatality rates from future cyclones by at least one order of magnitude.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>