Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Rethink Massive Iceberg Shifts That Have Occurred In North Atlantic

Some Heinrich events – periodic massive iceberg surges into the North Atlantic that were previously thought to have weakened the global ocean conveyor belt circulation and sent Earth’s climate into the deep freeze – may actually have been caused by changes in atmospheric circulation patterns, say a team of researchers that includes two Texas A&M University professors.

Matthew Schmidt, associate professor of oceanography, and Ping Chang, professor of oceanography and atmospheric science and director of the Texas Center for Climate Studies, along with colleagues from Georgia Tech, Princeton, the Woods Hole Oceanographic Institution, the University of Cambridge and Germany’s University of Bremen, have had their findings published in the latest issue of Nature Geoscience.

To make this discovery, the researchers studied the chemistry of shells produced by benthic foraminifera, single-celled organisms that live near the sea floor. These benthic foraminifera were collected from sediment cores recovered from the margins of the Florida Straits. By studying the oxygen isotope composition of the shells, the researchers were able to reconstruct past changes in Florida Current transport, which is directly related to the strength of the global conveyor belt circulation.

Researchers have known for years about Heinrich Events, periods of extreme cold in the North Atlantic. These events were named for the geologist who first discovered them, Hartmut Heinrich. They occurred during the last ice age when immense icebergs broke loose from glaciers, and as they melted, deposited ice rafted debris on the sea floor. Six of these Heinrich events have been identified, and they are known as H1 through H6.

“While there is evidence that the last Heinrich Event that occurred around 17,000 years ago was indeed caused by a dramatic reduction in the ocean’s conveyor belt circulation, our new reconstruction of ocean circulation patterns during some earlier Heinrich Events, that occurred during the last ice age between 20,000 and 30,000 years ago, did not reveal significant changes in ocean circulation,” Schmidt explains. “Nevertheless, these Heinrich Events were experienced worldwide, so they must have been transmitted via the atmosphere.”

Schmidt says that the study “has important implications for our understanding of the mechanisms of abrupt climate change in the past. The more we know about how climate changed in the past, the better prepared we will be for predicting future climate variability.”

Matthew Schmidt | Newswise
Further information:

More articles from Earth Sciences:

nachricht Field widens for environments, microbes that produce toxic form of mercury
12.10.2015 | DOE/Oak Ridge National Laboratory

nachricht Unexpected information about Earth's climate history from Yellow River sediment
09.10.2015 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>