Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers propose new way to probe Earth's deep interior

22.02.2013
Using particle physics to study the composition of Earth's deep interior

Researchers from Amherst College and The University of Texas at Austin have described a new technique that might one day reveal in higher detail than ever before the composition and characteristics of the deep Earth.


The picture depicts the long-range spin-spin interaction (blue wavy lines) in which the spin-sensitive detector on Earth’s surface interacts with geoelectrons (red dots) deep in Earth’s mantle. The arrows on the geoelectrons indicate their spin orientations, opposite that of Earth’s magnetic field lines (white arcs).

Credit: Marc Airhart (University of Texas at Austin) and Steve Jacobsen (Northwestern University).

There's just one catch: The technique relies on a fifth force of nature (in addition to gravity, the weak and strong nuclear forces and electromagnetism) that has not yet been detected, but which some particle physicists think might exist. Physicists call this type of force a long-range spin-spin interaction. If it does exist, this exotic new force would connect matter at Earth's surface with matter hundreds or even thousands of kilometers below, deep in Earth's mantle. In other words, the building blocks of atoms—electrons, protons, and neutrons—separated over vast distances would "feel" each other's presence. The way these particles interact could provide new information about the composition and characteristics of the mantle, which is poorly understood because of its inaccessibility.

"The most rewarding and surprising thing about this project was realizing that particle physics could actually be used to study the deep Earth," says Jung-Fu "Afu" Lin, associate professor at The University of Texas at Austin's Jackson School of Geosciences and co-author of the study appearing this week in the journal Science.

This new force could help settle a scientific quandary. When earth scientists have tried to model how factors such as iron concentration and physical and chemical properties of matter vary with depth — for example, using the way earthquake rumbles travel through the Earth or through laboratory experiments designed to mimic the intense temperatures and pressures of the deep Earth — they get different answers. The fifth force, assuming it exists, might help reconcile these conflicting lines of evidence.

Earth's mantle is a thick geological layer sandwiched between the thin outer crust and central core, made up mostly of iron-bearing minerals. The atoms in these minerals and the subatomic particles making up the atoms have a property called spin. Spin can be thought of as an arrow that points in a particular direction. It is thought that Earth's magnetic field causes some of the electrons in these mantle minerals to become slightly spin-polarized, meaning the directions in which they spin are no longer completely random, but have some preferred orientation. These electrons have been dubbed geoelectrons.

The goal with this project was to see whether the scientists could use the proposed long-range spin-spin interaction to detect the presence of these distant geoelectrons.

The researchers, led by Larry Hunter, professor of physics at Amherst College, first created a computer model of Earth's interior to map the expected densities and spin directions of geoelectrons. The model was based in part on insights gained from Lin's laboratory experiments that measure electron spins in minerals at the high temperatures and pressures of Earth's interior. This map gave the researchers clues about the strength and orientations of interactions they might expect to detect in their specific laboratory location in Amherst, Mass.

Second, the researchers used a specially designed apparatus to search for interactions between geoelectrons deep in the mantle and subatomic particles at Earth's surface. The team's experiments essentially explored whether the spins of electrons, neutrons or protons in various laboratories might have a different energy, depending on the direction with respect to the Earth that they were pointing.

"We know, for example, that a magnet has a lower energy when it is oriented parallel to the geomagnetic field and it lines up with this particular direction — that is how a compass works," explains Hunter. "Our experiments removed this magnetic interaction and looked to see if there might be some other interaction with our experimental spins. One interpretation of this 'other' interaction is that it could be a long-range interaction between the spins in our apparatus and the electron spins within the Earth, that have been aligned by the geomagnetic field. This is the long-range spin-spin interaction we were looking for."

Although the apparatus was not able to detect any such interactions, the researchers could at least infer that such interactions, if they exist, must be incredibly weak — no more than a millionth of the strength of the gravitational attraction between the particles. That's useful information as scientists now look for ways to build ever more sensitive instruments to search for the elusive fifth force.

"No one had previously thought about the possible interactions that might occur between the Earth's spin-polarized electrons and precision laboratory spin-measurements," says Hunter.

"If the long-range spin-spin interactions are discovered in future experiments, geoscientists can eventually use such information to reliably understand the geochemistry and geophysics of the planet's interior," says Lin.

Funding for this research was contributed by the National Science Foundation (grants PHY-0855465, PHY-1205824, EAR-1056670 and EAR-1053446), the Department of Energy's Center for Energy Frontier Research in Extreme Environments (EFree), and the Carnegie/DOE Alliance Center (CDAC).

Marc Airhart | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>