Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Estimates Future Sea Level Rise by Looking to the Past

02.05.2011
Leads Team to Australia to Search for 3 Million-Year-Old Shoreline

BU College of Arts & Sciences Paleoclimatologist Maureen Raymo and colleagues published findings that should help scientists better estimate the level of sea level rise during a period of high atmospheric carbon dioxide levels 3 million years ago. That geologic era, known as the mid-Pliocene climate optimum, saw much higher global temperatures that may have been caused by elevated levels of carbon dioxide—an analogy for the type of climate we are causing through human addition of greenhouse gases to the atmosphere.

During the mid-Pliocene climate optimum, sea levels were anywhere between 15 and 100 feet higher than at present because water that is now locked up in glaciers as ice circulated freely through the oceans. Raymo and her colleagues published their findings in the current edition of Nature Geoscience in a paper titled “Departures from eustasy in Pliocene sea-level records.” The paper provides an improved model for interpreting geologic evidence of ancient shorelines. The URL link to the press release about the paper is here: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1118.html.

The team’s findings add to the scientific body of knowledge about mid-Pliocene sea levels. By understanding the extent of sea level rise 3 million years ago, scientists like Raymo hope to more accurately predict just how high the seas will rise in the coming decades and centuries due to global warming.

Through their project, titled PLIOMAX (Pliocene maximum sea level project), Raymo and her colleagues have shared data with a larger community of geoscientists involved in studying similar so-called “high stand deposits” around the world. The accumulated data should shed light on the extent to which we can expect the Greenland Ice Sheet, West Antarctic Ice Sheet, and East Antarctic Ice Sheet to melt due to increasing levels of atmospheric carbon dioxide.

Raymo is a Research Professor in the Department of Earth Science in BU’s College of Arts & Sciences. She is also a member of BU’s Climate and Earth History Research Group. She received her Ph.D. from Columbia University in 1989 and has recently accepted a position to return to Columbia University.

Raymo studies the causes of climate change over Earth’s history, in particular the role played by the global carbon cycle and Earth’s orbital variations around the Sun. Most of her work has been based on data collected from deep-sea sediment and microfossils recovered using the research vessel JOIDES Resolution. She has used the stable isotopes of oxygen and carbon to study past ocean circulation and ice volume history and is well known for her proposal that the cooling of global climate over the last 40 million years was caused primarily by enhanced chemical weathering and consumption of atmospheric CO2 in the mountainous regions of the world, especially in the Himalayas.

About Boston University—Founded in 1839, Boston University is an internationally recognized institution of higher education and research. With more than 30,000 students, it is the fourth largest independent university in the United States. BU contains 17 colleges and schools along with a number of multi-disciplinary centers and institutes which are central to the school's research and teaching mission.

Patrick Farrell | Newswise Science News
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>