Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows rivers cut deep notches in the Alps' broad glacial valleys

06.12.2010
For years, geologists have argued about the processes that formed steep inner gorges in the broad glacial valleys of the Swiss Alps.

The U-shaped valleys were created by slow-moving glaciers that behaved something like road graders, eroding the bedrock over hundreds or thousands of years.

When the glaciers receded, rivers carved V-shaped notches, or inner gorges, into the floors of the glacial valleys. But scientists disagreed about whether those notches were erased by subsequent glaciers and then formed all over again as the second round of glaciers receded.

New research led by a University of Washington scientist indicates that the notches endure, at least in part, from one glacial episode to the next. The glaciers appear to fill the gorges with ice and rock, protecting them from being scoured away as the glaciers move.

When the glaciers receded, the resulting rivers returned to the gorges and easily cleared out the debris deposited there, said David Montgomery, a UW professor of Earth and space sciences.

"The alpine inner gorges appear to lay low and endure glacial attack. They are topographic survivors," Montgomery said.

"The answer is not so simple that the glaciers always win. The river valleys can hide under the glaciers and when the glaciers melt the rivers can go back to work."

Montgomery is lead author of a paper describing the research, published online Dec. 5 in Nature Geoscience. Co-author is Oliver Korup of the University of Potsdam in Germany, who did the work while with the Swiss Federal Research Institutes in Davos, Switzerland.

The researchers used topographic data taken from laser-based (LIDAR) measurements to determine that, if the gorges were erased with each glacial episode, the rivers would have had to erode the bedrock from one-third to three-quarters of an inch per year since the last glacial period to get gorges as deep as they are today.

"That is screamingly fast. It's really too fast for the processes," Montgomery said. Such erosion rates would exceed those in all areas of the world except the most tectonically active regions, the researchers said, and they would have to maintain those rates for 1,000 years.

Montgomery and Korup found other telltale evidence, sediment from much higher elevations and older than the last glacial deposits, at the bottom of the river gorges. That material likely was pushed into the gorges as glaciers moved down the valleys, indicating the gorges formed before the last glaciers.

"That means the glaciers aren't cutting down the bedrock as fast as the rivers do. If the glaciers were keeping up, each time they'd be able to erase the notch left by the river," Montgomery said.

"They're locked in this dance, working together to tear the mountains down."

The work raises questions about how common the preservation of gorges might be in other mountainous regions of the world.

"It shows that inner gorges can persist, and so the question is, 'How typical is that?' I don't think every inner gorge in the world survives multiple glaciations like that, but the Swiss Alps are a classic case. That's where mountain glaciation was first discovered."

For more information, contact Montgomery at 206-685-2560 or dave@ess.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>