Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research in Antarctica reveals non-organic mechanism for production of important greenhouse gas

26.04.2010
In so many ways, Don Juan Pond in the Dry Valleys of Antarctica is one of the most unearthly places on the planet. An ankle-deep mirror between mountain peaks and rubbled moraine, the pond is an astonishing 18 times saltier than the Earth's oceans and virtually never freezes, even in temperatures of more than 40 degrees below zero Fahrenheit.

Now, a research team led by biogeochemists from the University of Georgia has discovered at the site a previously unreported chemical mechanism for the production of nitrous oxide, an important greenhouse gas. Possibly even more important, the discovery could help space scientists understand the meaning of similar brine pools in a place whose ecosystem most closely resembles that of Don Juan Pond: Mars.

The research, published April 25 in the journal Nature Geoscience, adds an intriguing new variable to growing evidence that there has been—and may still be—liquid water on Mars, a usual prerequisite for the formation of life. In fact, the new findings could help space scientists develop sensors for detecting such brines on Mars—thus narrowing the search for places where life may exist.

"The pond's soils and brines and the surrounding rock types are similar to those found on Mars," said Samantha Joye, a faculty member in the department of marine sciences in the Franklin College of Arts and Sciences and lead author on the paper. "So it provides an ideal location to assess microbial activity in extreme environments. While we did not detect any 'bio-gases' such as hydrogen sulfide and methane, we did, surprisingly, measure high concentrations of nitrous oxide, which is normally an indicator of microbial activity. We needed to find out whether a non-organic process could account for this nitrous oxide production."

Other authors on the paper include Vladimir Samarkin, a research scientist, and Marshall Bowles, a graduate student, also of the department of marine sciences at UGA; Michael Madigan of Southern Illinois University; Karen Casciotti of the Woods Hole Oceanographic Institution; John Priscu of Montana State University; and Christopher McKay of the Ames Research Center of NASA.

The research was supported by grants from the National Science Foundation's Antarctic Organisms and Ecosystems Program and the McMurdo Microbial Observatory Program.

Scientists have been fascinated with Don Juan Pond since its discovery in 1961. (While the site is lovely, there's nothing romantic about the name, which comes from the helicopter pilots who first found it, Don Roe and John Hickey.) From the time of its discovery, researchers realized they had found a place like nowhere else on Earth.

The pond, which is a roughly 1,000- by 400-meter basin, is the saltiest body of water on Earth by far, some eight times saltier than the Dead Sea. While researchers more than 30 years ago reported finding abundant and varied microflora of fungi, bacteria, blue-green algae and yeasts, since then and during the Joye team's work, such life has been non-existent. Since the depth level and area covered by the pond (which is fed by hypersaline groundwater) have demonstrably varied over the years, this wasn't unexpected. What did surprise the team was that even with no life-forms present, they were able to measure nitrous oxide, perhaps best known to most people as the "laughing gas" used in dental procedures. (The amounts measured in the air were beneath a level that could make a person light-headed or giddy, as "laughing gas" can.)

"What we found was a suite of brine-rock reactions that generates a variety of products, including nitrous oxide and hydrogen," said Joye. "In addition to Don Juan Pond, this novel mechanism may occur in other environments on Earth as well and could serve as both an important component of the Martian nitrogen cycle and a source of fuel [hydrogen] to support microbial chemosynthesis."

Even more interesting, perhaps, is that the results suggest that an additional mechanism—the reaction of brine-derived nitrates with basaltic rock—could be a "previously unrecognized means for mobilizing nitrate from the surface soils . . . and returning it to the Martian atmosphere as nitrous oxide," Joye said.

The discovery of water has been the holy grail of numerous Mars missions over the years, and in 2009 the Mars Phoenix mission's cameras photographed on the legs of the lander what appeared to be liquid water. If ultimately confirmed—and growing evidence appears to be solidifying in favor of such an analysis—it would be the first time liquid water was detected and photographed outside the Earth.

Working in such a beautiful but unearthly area presents stern challenges to researchers, Joye said.

"It's a 40-minute helicopter ride over the McMurdo Sound just to get there," she said. "Once in the Wright Valley, we enter a tight enclosure with steep, rocky cliffs on both sides, and between them is Don Juan Pond. I believe it must be one of the most beautiful places in Antarctica."

Samarkin agreed.

"It has the kind of beauty that rock parks in Japan have," he said, "except this is made by nature."

Beauty aside, though, the team had to dress in sterile suits and masks and use sterile instruments for sampling to avoid possible contamination. They also collected the minimal amount of material necessary to achieve their research goals.

The discovery of the new mechanism opens numerous questions that must be studied, including the possibility that the process is taking place in other extreme Antarctic habitats or that it might contribute to nitrous oxide in temperate soils—a possible new clue to understanding greenhouse gases involved in global warming.

The most crucial result, however, may be in understanding how similar brine pools on Mars might work and whether they could support life.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>