Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2002 Alaskan quake left 7 areas of California stirred but not shaken

27.11.2007
Earth tremors not linked to volcanic activity first turned up in seismic observations several years ago, but those tremors were almost exclusively in subduction zones such as the Cascadia region off the coast of the Pacific Northwest.

New research has found evidence of tremors along non-subduction zone faults in seven California locations. The tremors immediately followed the magnitude 7.8 Denali earthquake in Alaska on Nov. 3, 2002 and are linked to that quake even though they are as much as 2,400 miles from its epicenter.

"This suggests there is a much greater variety of ways that faults store up stress and release it," said Joan Gomberg, an affiliate professor of Earth and space sciences at the University of Washington and a research scientist with the U.S. Geological Survey in Seattle.

The tremors began within an hour of the Denali earthquake, and their signal was observed as high-frequency pulses among the lower-frequency signals from the main earthquake. The seven distinct areas, stretching from north of San Francisco to southeast of Los Angeles, are near Napa Valley, San Jose, San Juan Bautista, Simi Valley, Hemet and two sites near Parkfield.

Five of the sources are close to or on dominant strike-slip faults – the San Andreas, San Jacinto and Calaveras faults – in which two blocks of the Earth's crust slide past each other horizontally. The scientists believe the other two tremor sources, in Napa Valley and Simi Valley, are likely on more minor faults.

"All seven of these were set off by the strong passing waves from Denali," Gomberg said.

The research is being published Nov. 22 in Science Express, the online edition of the journal Science. Co-authors are Justin Rubinstein, Kenneth Creager, John Vidale and Paul Bodin of the UW and Zhigang Peng of the Georgia Institute of Technology.

Tremor episodes have been observed near volcanoes for many years, and more recently they have been seen around subduction zones such as Cascadia, regions where the Earth's tectonic plates are shifting so that one slides beneath another. Tremors in subduction zones are associated with slow-slip events in which energy equivalent to a moderate-sized earthquake is released over days or weeks, rather than seconds.

The scientists examined all available recordings of Denali earthquake waves from seismic stations throughout California and were able to identify high-frequency waves that pulsed with passing surface waves. The researchers determined the high-frequency waves were not part of the Denali quake itself, nor were they caused by any smaller nearby earthquakes.

Previous studies have indicated a possible link between tremor or slow-slip events and fluids and high temperatures within tectonic plates. So the scientists specifically examined data from stations close to two geothermal fields in California, but they found no apparent signal for tremor.

"It was the opposite of what we expected," Gomberg said.

The lack of tremor in these areas triggered by the Denali earthquake probably means that while fluids or high temperatures might be necessary for a tremor, they are not sufficient by themselves to produce tremor, the scientists concluded.

Gomberg said it is possible that tremor events occur at the edges of zones where two tectonic plates are locked together, gradually building energy toward a major earthquake. If that is the case, she said, the research could help scientists map the locked zones and develop a clearer picture of a particular region's earthquake risk.

"This has opened new questions, and perhaps it has provided the start of some answers, about what makes faults move and the ways that they move," Gomberg said.

"Such research has made it worth it to put in all the recording equipment that we have measuring seismic events. You never know what you are going to learn."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>