Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Petrified velvet worms from 425 million years ago reveal ecology of the distant past

27.11.2007
University of Leicester Geologist Dr Mark Purnell, with Canadian colleagues, reported, in the journal Geology, a new, exceptionally preserved deposit of fossils in 425 million year old Silurian rocks in Ontario.

The fossils include complete fish (only the second place on earth where whole fish of this age have been found), various shrimp and worm like creatures, including velvet-worms, which look (in Dr Purnell’s words) “rather like a dozen headless Michelin men dancing a conga”.

The velvet worms were deflated slightly by a little early rotting, but within days of dying these animals had been transformed to the mineral calcium phosphate. This preserved them as beautiful petrified fossils, showing the wonderful detail of their bodies, including coloured stripes.

This Canadian deposit is unusual even for sites of exceptional preservation because it also includes normal shelly fossils. From this it is possible to be sure that the conditions in which all the animals were living were not much different to normal nearshore seas of the Silurian period.

Dr Purnell commented: “It provides us with our best view of what lived together in such environments 425 million years ago, and our best information for understanding how life on earth at that time was different to today.

“If people think of a fossil, they will undoubtedly be thinking of something with a hard skeleton or shell of some sort, and it is true that the vast majority of fossil are what in today’s world we call sea shells. But imagine trying to understand the biodiversity and ecology of a submarine seaside ecosystem with only the remains of sea shells to go on.

“All the variety of worms that crawl over and into the sand would be unknown, as would all the shrimpy things that scurry over the surface. We would have only a very partial view of the real biological picture.

“This is what palaeontologists are faced with when they try to reconstruct the history and past ecology of life on Earth, because everything without a shell very quickly, within hours or days, rots away to nothing, leaving no trace that it ever existed.”

Fortunately, there are a few special rock deposits scattered around the world that preserve fossilised traces of those things that normally rot away. These are known to palaeontologists as sites of exceptional preservation, but they are, Dr Purnell says, tricky to interpret precisely because they are exceptional.

“They require very unusual environmental conditions in order to slow down the decomposition of soft tissues, such as muscle and skin, and rapidly transform them into geologically stable minerals that will survive as fossils for millions of years.

“The difficulty for geologists has been that if the conditions are exceptionally unusual, is that also true of the preserved fauna or is it a more typical example? That is something our latest find has helped resolve.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk/press/experts/intro.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>