Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Petrified velvet worms from 425 million years ago reveal ecology of the distant past

University of Leicester Geologist Dr Mark Purnell, with Canadian colleagues, reported, in the journal Geology, a new, exceptionally preserved deposit of fossils in 425 million year old Silurian rocks in Ontario.

The fossils include complete fish (only the second place on earth where whole fish of this age have been found), various shrimp and worm like creatures, including velvet-worms, which look (in Dr Purnell’s words) “rather like a dozen headless Michelin men dancing a conga”.

The velvet worms were deflated slightly by a little early rotting, but within days of dying these animals had been transformed to the mineral calcium phosphate. This preserved them as beautiful petrified fossils, showing the wonderful detail of their bodies, including coloured stripes.

This Canadian deposit is unusual even for sites of exceptional preservation because it also includes normal shelly fossils. From this it is possible to be sure that the conditions in which all the animals were living were not much different to normal nearshore seas of the Silurian period.

Dr Purnell commented: “It provides us with our best view of what lived together in such environments 425 million years ago, and our best information for understanding how life on earth at that time was different to today.

“If people think of a fossil, they will undoubtedly be thinking of something with a hard skeleton or shell of some sort, and it is true that the vast majority of fossil are what in today’s world we call sea shells. But imagine trying to understand the biodiversity and ecology of a submarine seaside ecosystem with only the remains of sea shells to go on.

“All the variety of worms that crawl over and into the sand would be unknown, as would all the shrimpy things that scurry over the surface. We would have only a very partial view of the real biological picture.

“This is what palaeontologists are faced with when they try to reconstruct the history and past ecology of life on Earth, because everything without a shell very quickly, within hours or days, rots away to nothing, leaving no trace that it ever existed.”

Fortunately, there are a few special rock deposits scattered around the world that preserve fossilised traces of those things that normally rot away. These are known to palaeontologists as sites of exceptional preservation, but they are, Dr Purnell says, tricky to interpret precisely because they are exceptional.

“They require very unusual environmental conditions in order to slow down the decomposition of soft tissues, such as muscle and skin, and rapidly transform them into geologically stable minerals that will survive as fossils for millions of years.

“The difficulty for geologists has been that if the conditions are exceptionally unusual, is that also true of the preserved fauna or is it a more typical example? That is something our latest find has helped resolve.”

Ather Mirza | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>