Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning a risk into a resource

11.10.2007
For some years, Eawag researchers have been keeping a watchful eye on Lake Kivu in East Africa, given the hazard posed by the billions of cubic metres of gases dissolved in the deep waters, in a project sponsored by the Swiss National Science Foundation. Controlled use of this methane resource could now offer a twofold benefit – ensuring secure power supplies in the region for decades and reducing the risk of a deadly gas eruption.

Lake Kivu, lying between Rwanda and the Democratic Republic of the Congo, is about one and a half times the size of Canton Zurich and almost 500 metres deep. The landscape around the lake is reminiscent of the foothills of the Swiss Alps, although banana and cassava plants grow on the slopes, rather than beech and pine trees.

Belying the idyllic setting, however, is a serious hazard in the depths of the lake: approx. 250 billion m3 of carbon dioxide and 55 billion m3 of methane are dissolved in the water. In recent years, the Swiss researchers have shown that the gas concentrations are increasing, with a rise of up to 20 per cent since the 1970s in the case of methane. At present, the gas remains dissolved in the bottom layers as a result of the high water pressure at this depth and the extremely stable stratification of the lake, which means that exchanges between the bottom and surface waters are very limited. However, if gas concentrations continue to increase or if a severe disruption occurred – e.g. following a volcanic eruption or a major earthquake – the situation could change rapidly.

Large quantities of gas bubbles could rise to the surface, triggering a chain reaction that could lead to a massive gas eruption. The release of a mixture of carbon dioxide and methane gases could have catastrophic consequences on the densely populated shores of Lake Kivu, where roughly 2 million people live. Hundreds of thousands could be asphyxiated. In 1986, a disaster of this kind occurred on Lake Nyos in Cameroon, with 1800 people dying after a gas eruption.

The Rwandan government now plans to exploit the gas reserves in Lake Kivu for power generation. It recently awarded the South African engineering company Murray & Roberts a contract to construct a power station. This pilot project is to be initiated in 2008. The principle is simple: if a pipe extending into the depths of the lake is installed, water rises spontaneously as a result of the gas bubbles forming in the pipe. At the surface, the water effervesces – like carbonated water from a bottle that has been shaken before being opened. The methane then has to be separated from the carbon dioxide before it can be used. Professor Alfred Wüest, Head of the Surface Waters Department at Eawag, points out: “It makes sense to use the gas, especially if the risk of an eruption can thereby be reduced at the same time. But because nobody knows exactly how the lake will respond to this extraction, even small-scale pilot studies have to be performed and monitored extremely carefully.”

Wüest and his team have been requested by the Rwandan government and the Netherlands Commission for Environmental Impact Assessment (NCEIA) to oversee the planning of methane recovery on Lake Kivu. This week, several workshops involving international experts are being held to establish a framework which will ensure that the stability of stratification and the ecology of the lake are closely monitored. One controversial question, for example, concerns the depth at which the degassed water should be returned to the lake so as to prevent disruption of the stratification. Also under discussion is whether at least some of the carbon dioxide can be piped back into the deep water, so that greenhouse gas emissions to the atmosphere from methane exploitation are kept to a minimum. Another key question is how methane recovery will affect the growth of algae in the lake. Errors in planning could have a disastrous impact on the sensitive ecosystem and people’s livelihoods. As well as a computer model for simulating processes in the lake, the researchers are therefore also developing a continuous monitoring programme. Any ominous changes occurring in the depths are not to go unnoticed.

Andri Bryner | alfa
Further information:
http://www.eawag.ch

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>