Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning a risk into a resource

11.10.2007
For some years, Eawag researchers have been keeping a watchful eye on Lake Kivu in East Africa, given the hazard posed by the billions of cubic metres of gases dissolved in the deep waters, in a project sponsored by the Swiss National Science Foundation. Controlled use of this methane resource could now offer a twofold benefit – ensuring secure power supplies in the region for decades and reducing the risk of a deadly gas eruption.

Lake Kivu, lying between Rwanda and the Democratic Republic of the Congo, is about one and a half times the size of Canton Zurich and almost 500 metres deep. The landscape around the lake is reminiscent of the foothills of the Swiss Alps, although banana and cassava plants grow on the slopes, rather than beech and pine trees.

Belying the idyllic setting, however, is a serious hazard in the depths of the lake: approx. 250 billion m3 of carbon dioxide and 55 billion m3 of methane are dissolved in the water. In recent years, the Swiss researchers have shown that the gas concentrations are increasing, with a rise of up to 20 per cent since the 1970s in the case of methane. At present, the gas remains dissolved in the bottom layers as a result of the high water pressure at this depth and the extremely stable stratification of the lake, which means that exchanges between the bottom and surface waters are very limited. However, if gas concentrations continue to increase or if a severe disruption occurred – e.g. following a volcanic eruption or a major earthquake – the situation could change rapidly.

Large quantities of gas bubbles could rise to the surface, triggering a chain reaction that could lead to a massive gas eruption. The release of a mixture of carbon dioxide and methane gases could have catastrophic consequences on the densely populated shores of Lake Kivu, where roughly 2 million people live. Hundreds of thousands could be asphyxiated. In 1986, a disaster of this kind occurred on Lake Nyos in Cameroon, with 1800 people dying after a gas eruption.

The Rwandan government now plans to exploit the gas reserves in Lake Kivu for power generation. It recently awarded the South African engineering company Murray & Roberts a contract to construct a power station. This pilot project is to be initiated in 2008. The principle is simple: if a pipe extending into the depths of the lake is installed, water rises spontaneously as a result of the gas bubbles forming in the pipe. At the surface, the water effervesces – like carbonated water from a bottle that has been shaken before being opened. The methane then has to be separated from the carbon dioxide before it can be used. Professor Alfred Wüest, Head of the Surface Waters Department at Eawag, points out: “It makes sense to use the gas, especially if the risk of an eruption can thereby be reduced at the same time. But because nobody knows exactly how the lake will respond to this extraction, even small-scale pilot studies have to be performed and monitored extremely carefully.”

Wüest and his team have been requested by the Rwandan government and the Netherlands Commission for Environmental Impact Assessment (NCEIA) to oversee the planning of methane recovery on Lake Kivu. This week, several workshops involving international experts are being held to establish a framework which will ensure that the stability of stratification and the ecology of the lake are closely monitored. One controversial question, for example, concerns the depth at which the degassed water should be returned to the lake so as to prevent disruption of the stratification. Also under discussion is whether at least some of the carbon dioxide can be piped back into the deep water, so that greenhouse gas emissions to the atmosphere from methane exploitation are kept to a minimum. Another key question is how methane recovery will affect the growth of algae in the lake. Errors in planning could have a disastrous impact on the sensitive ecosystem and people’s livelihoods. As well as a computer model for simulating processes in the lake, the researchers are therefore also developing a continuous monitoring programme. Any ominous changes occurring in the depths are not to go unnoticed.

Andri Bryner | alfa
Further information:
http://www.eawag.ch

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>