Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid analysis could cut health risks of volcanic ash

11.10.2007
A new, rapid and cheap way of estimating the potential risk posed to human health by volcanic ash has been devised by a Durham University expert.

Dr Claire Horwell, of the University’s Institute of Hazard and Risk Research, has developed a sieving technique which analyses the grain size of volcanic ash to determine its possible threat to many thousands of humans affected by the estimated 70 volcanic eruptions which happen worldwide each year.

Her research, funded by the UK Natural Environment Research Council (NERC) and published in the Journal of Environmental Monitoring, could help shape emergency response plans following a volcanic eruption and cut the possible risk to human health posed by breathing in fine particles of ash.

Although medical research is on-going, volcanic ash is thought to trigger attacks of acute respiratory diseases, such as asthma and bronchitis, in people who already have the diseases. It also has the potential to cause chronic diseases such as the lung disease silicosis.

Medical studies to assess the risk from the ash following an eruption can take years, but if ash is too large to enter the lung it cannot be a hazard.

In many countries only basic sieves are available for assessing the grain size of volcanic ash, but until now sieving could not determine if particles were fine enough to enter the lung.

To solve this problem Dr Horwell used state-of-the-art laser technology to analyse the grain size of samples from around the world.

She found there was a strong link between the ratios of different-sized particles present. She then used this link to develop a formula so the amount of breathable particles could be estimated by sieving.

This sieving technique could allow emergency response teams to quickly and cheaply measure the potential risk to health without the need for high-tech equipment. Depending on the risk, measures could be put in place to protect people living close-by.

Volcanic ash can be present in the air following an eruption for many months, often being remobilised by wind or human activities such as driving.

A number of volcanic eruptions are reported worldwide each year. Last week a volcano on the Yemeni island of Jabal al-Tair, in the Red Sea, erupted for the first time since the nineteenth century sending ash 1,000ft into the air as well as spewing out lava.

In September an eruption of Ol Doinyo Lengai, in Tanzania, eastern Africa, produced ashfall which lasted about 12 hours in the village of Engare Sero, while the eruption of the Soufriere Hills volcano on the Caribbean island of Montserrat, which began in 1995, continues today.

Dr Horwell, who is also co-ordinator of the International Volcanic Health Hazard Network, said: “We need a rapid way to assess the hazard to human health from volcanic ash.

“This technique means that scientists can sieve the ash then very quickly work out what percentage of the material could enter the lung.

“If only a very small percentage of the ash is capable of entering the lung then it is unlikely to present a health hazard, but if there is a high percentage then you would want to issue dust masks or think about evacuating people from the surrounding area.”

Dr Horwell is also recommending that a network of ash collection sites be set up prior to an eruption so that a rapid assessment of health hazards can be made across a region.

Dr Peter Baxter, at the Institute of Public Health, University of Cambridge, said: “Volcanologists have traditionally reported on the coarser grain sizes of volcanic ash for their particular purposes rather than the finer material which is the most important for assessing the hazard to respiratory health of populations affected by ash falls in a volcanic eruption.

“This paper will encourage volcanologists to provide a fuller profile of the grain sizes of erupted ash on a routine basis and, most importantly, to be more able to support multi-disciplinary responses to the human impacts of ash falls in future volcanic eruptions, especially in developing countries.”

| alfa
Further information:
http://www.durham.ac.uk

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>