Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid analysis could cut health risks of volcanic ash

11.10.2007
A new, rapid and cheap way of estimating the potential risk posed to human health by volcanic ash has been devised by a Durham University expert.

Dr Claire Horwell, of the University’s Institute of Hazard and Risk Research, has developed a sieving technique which analyses the grain size of volcanic ash to determine its possible threat to many thousands of humans affected by the estimated 70 volcanic eruptions which happen worldwide each year.

Her research, funded by the UK Natural Environment Research Council (NERC) and published in the Journal of Environmental Monitoring, could help shape emergency response plans following a volcanic eruption and cut the possible risk to human health posed by breathing in fine particles of ash.

Although medical research is on-going, volcanic ash is thought to trigger attacks of acute respiratory diseases, such as asthma and bronchitis, in people who already have the diseases. It also has the potential to cause chronic diseases such as the lung disease silicosis.

Medical studies to assess the risk from the ash following an eruption can take years, but if ash is too large to enter the lung it cannot be a hazard.

In many countries only basic sieves are available for assessing the grain size of volcanic ash, but until now sieving could not determine if particles were fine enough to enter the lung.

To solve this problem Dr Horwell used state-of-the-art laser technology to analyse the grain size of samples from around the world.

She found there was a strong link between the ratios of different-sized particles present. She then used this link to develop a formula so the amount of breathable particles could be estimated by sieving.

This sieving technique could allow emergency response teams to quickly and cheaply measure the potential risk to health without the need for high-tech equipment. Depending on the risk, measures could be put in place to protect people living close-by.

Volcanic ash can be present in the air following an eruption for many months, often being remobilised by wind or human activities such as driving.

A number of volcanic eruptions are reported worldwide each year. Last week a volcano on the Yemeni island of Jabal al-Tair, in the Red Sea, erupted for the first time since the nineteenth century sending ash 1,000ft into the air as well as spewing out lava.

In September an eruption of Ol Doinyo Lengai, in Tanzania, eastern Africa, produced ashfall which lasted about 12 hours in the village of Engare Sero, while the eruption of the Soufriere Hills volcano on the Caribbean island of Montserrat, which began in 1995, continues today.

Dr Horwell, who is also co-ordinator of the International Volcanic Health Hazard Network, said: “We need a rapid way to assess the hazard to human health from volcanic ash.

“This technique means that scientists can sieve the ash then very quickly work out what percentage of the material could enter the lung.

“If only a very small percentage of the ash is capable of entering the lung then it is unlikely to present a health hazard, but if there is a high percentage then you would want to issue dust masks or think about evacuating people from the surrounding area.”

Dr Horwell is also recommending that a network of ash collection sites be set up prior to an eruption so that a rapid assessment of health hazards can be made across a region.

Dr Peter Baxter, at the Institute of Public Health, University of Cambridge, said: “Volcanologists have traditionally reported on the coarser grain sizes of volcanic ash for their particular purposes rather than the finer material which is the most important for assessing the hazard to respiratory health of populations affected by ash falls in a volcanic eruption.

“This paper will encourage volcanologists to provide a fuller profile of the grain sizes of erupted ash on a routine basis and, most importantly, to be more able to support multi-disciplinary responses to the human impacts of ash falls in future volcanic eruptions, especially in developing countries.”

| alfa
Further information:
http://www.durham.ac.uk

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>