Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When bivalves ruled the world

04.09.2007
Paleobiologist studies how elevated C02 affected ancient marine life

Before the worst mass extinction of life in Earth’s history – 252 million years ago – ocean life was diverse and clam-like organisms called brachiopods dominated. After the calamity, when little else existed, a different kind of clam-like organism, called a bivalve, took over.

What can the separate fates of these two invertebrates tell scientists about surviving an extinction event"

A lot, says UWM paleoecologist Margaret Fraiser. Her research into this particular issue not only answers the question; it also supports a relatively new theory for the cause of the massive extinctions that occurred as the Permian period ended and the Triassic period began: toxic oceans created by too much atmospheric carbon dioxide (C02).

The theory is important because it could help scientists predict what would happen in the oceans during a modern “C02 event.” And it could give them an idea of what recovery time would be.

Studying the recovering ecology is equally significant, says Fraiser. The evolution of surviving species in the aftermath of the mass extinction set the stage for dinosaurs to evolve later in the Triassic.

From air to water Fossil records suggest that trauma in the oceans actually began in the air.

“Estimates of the C02 in the atmosphere then were between six and 10 times greater than they are today,” says Fraiser, an assistant professor of geosciences. It makes sense, she says. The largest continuous volcanic eruption on Earth – known as the “Siberian Traps” – had been pumping out C02 for about a million years prior to the Permian-Triassic mass extinction.

The Permian-Triassic extinction wiped out 70 percent of life on land and close to 95 percent in the ocean – nearly everything except for bivalves and a fewer number of gastropods (snails).

C02 is a greenhouse gas that influences global temperatures. But, says Fraiser, according to the fossil record, high levels of C02 and the correspondingly low levels of oxygen do much more than that.

The hypothesis unfolds like this: High C02 levels would have increased temperatures, resulting in global warming on a large scale. With no cold water at the poles, ocean circulation would have stagnated. The oceans would have become low in oxygen, killing off life in deeper waters where there was no opportunity for water to mix with the little oxygen in the atmosphere.

More carbon dioxide would have been created as life forms died and microbes broke them down, which also would have created poisonous hydrogen sulfide. The oceans would have become an inhabitable chemical cocktail.

Follow the CO2 In fact, there have been many CO2 events in geologic time, and they’ve literally left their mark.

“You can see where the rock turned dark,” says Fraiser, pointing out different-colored layers in a fossil samples from the period. “That is an indicator of low oxygen at the time. These are from sites that were underwater at the beginning of the Triassic period.”

Fraiser, who has just finished her first year at UWM, is one of several new faculty in geosciences and its emerging paleobiology program.

She has collected fossil samples of the marine survivors from the period in what today are China, Japan, Italy and the western United States. The similarities of the fossils from all these locations have been surprising.

“It is unexpected to see that,” says Fraiser. “It appears that these bivalves and gastropods were the only survivors worldwide.”

They had all the right characteristics to tolerate the lack of oxygen, she says. They were tiny, shallow-water dwellers, with a high metabolism and flat shape that allowed them to spread out to extract more of the limited oxygen when feeding.

Toxic conditions also inhibited marine life from producing a shell. Size suddenly mattered for mollusks, and only the very small survived, eroding the balance of the marine food chain.

Ultra-slow rebound As she sorts through the rock record from just after the Permian-Triassic extinction, Fraiser also has unearthed evidence that explains why it took so long for life to recover. The answer appears to be more of the same: C02 levels remained high long after the initial die-off.

“After other extinction events on Earth, life bounced back within 100,000 to a million years,” she says. “But with the Permian-Triassic extinction, we don’t see a recovery for 5 million years. There is very low ecological complexity and diversity for all of that time.”

Another intriguing aspect of this interval in Earth’s history, says Fraiser, is that, according to the rock record from the Triassic, it was bounded by two C02 events.

The first was the disappearance of coral reefs. “That gap sounded the alarm,” she says. “That’s what indicated that C02 levels were elevated.”

On the back end, large communities of bivalves prevailed in such large numbers that they formed their own reefs.

Fraiser’s charting of the C02 “domino effect” on Early Triassic marine life is valuable as scientists study climate change today, says UWM Geology Professor John Isbell.

“The Earth’s system doesn’t care where the C02 comes from,” Isbell says. “It’s going to respond the same way.”

Margaret Fraiser | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>