Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado study shows massive CO2 burps from ocean to atmosphere at end of last ice age

14.05.2007
A University of Colorado at Boulder-led research team tracing the origin of a large carbon dioxide increase in Earth's atmosphere at the end of the last ice age has detected two ancient "burps" that originated from the deepest parts of the oceans.

The new study indicated carbon that had built up in the oceans over millennia was released in two big pulses, one about 18,000 years ago and one 13,000 years ago, said Thomas Marchitto and Scott Lehman of CU-Boulder's Institute of Arctic and Alpine Research, who jointly led the study. While scientists had long known as much as 600 billion metric tons of carbon were released into the atmosphere after the last ice age, the new study is the first to clearly track CO2 from the deep ocean to the upper ocean and atmosphere and should help scientists better understand natural CO2 cycles and possible impacts of human-caused climate change.

"This is some of the clearest evidence yet that the enormous carbon release into the atmosphere during the last deglaciation was triggered by abrupt changes in deep ocean circulation," said Marchitto. Marchitto and Lehman are both faculty members in the CU-Boulder geological sciences department.

While much of the CO2 released by the oceans after the end of the last ice age about 19,000 years ago was taken up by the re-growth of forests in areas previously covered by ice sheets, enough remained in the atmosphere to pump up CO2 concentrations significantly, the authors said. Today, CO2 levels are higher than at any time in at least the past 650,000 years because of increased fossil fuel burning.

"The timing of the major CO2 release after the last ice age corresponds closely with deep-sea circulation changes caused by ice melting in the North Atlantic at that time," said Lehman. "So our study really underscores ongoing concerns about the ocean's capacity to take up fossil fuel CO2 in the future, since continued warming will almost certainly impact the mode and speed of ocean circulation."

The team analyzed sediment cores hauled from the Pacific Ocean seafloor at a depth of about 2,300 feet off the coast of Baja California using an isotopic "tracer," known as carbon 14, to track the escape of carbon from the deep sea through the upper ocean and into the atmosphere during the last 40,000 years. Extracted from the shells of tiny marine organisms known as foraminifera -- which contain chemical signatures of seawater dating back tens of thousands of years -- carbon 14 is the isotope most commonly used to radiocarbon date organic material like wood, bone and shell.

They found the carbon 14 "age" of the upper ocean water was basically constant over the past 40,000 years, except during the interval following the most recent ice age, when atmospheric CO2 increased dramatically. The study shows the carbon added to the upper ocean and atmosphere at the end of the last ice age was "very old," suggesting it had been stored in the deep ocean and isolated from the atmosphere for thousands of years, said Marchitto.

"Because carbon 14 works both as a 'tracer' and a 'clock,' we were able to show that the uptake and release of CO2 by the ocean in the past was intimately linked to how and how fast the ocean circulated," said Marchitto.

Humans have pumped an estimated 300 billion tons of carbon into the atmosphere since the Industrial Revolution, and the oceans have taken up about half of it, said Lehman.

"If the oceans were not such a large storage 'sink' for carbon, atmospheric CO2 increases in recent decades would be considerably higher," he said. "Since the uptake of CO2 on Earth's land surface is being offset almost entirely by the cutting and burning of forests, any decrease in the uptake of fossil fuel CO2 by the world's oceans could pose some very serious problems," Lehman said.

"When the ocean circulation system changes, it alters how carbon-rich deep water rises to the surface to release its carbon to the atmosphere," said Interim Director of INSTAAR Jim White, a climate scientist who was not involved in the study. "This is important not only for understanding why glacial times came and went in the past, but it is crucial information we need to understand how the oceans will respond to future climate change."

Studies by CU-Boulder and other institutions in the past several years have shown sharp declines in Arctic sea ice in recent decades and a loss in ice mass from Greenland, which some believe could combine to alter North Atlantic circulation and disrupt ocean circulation patterns worldwide.

Thomas Marchitto | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>