Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3.2 Billion-Year-Old Surprise: Earth Had Strong Magnetic Field

05.04.2007
Geophysicists at the University of Rochester announce in today's issue of Nature that the Earth's magnetic field was nearly as strong 3.2 billion years ago as it is today.

The findings, which are contrary to previous studies, suggest that even in its earliest stages the Earth was already well protected from the solar wind, which can strip away a planet's atmosphere and bathe its surface in lethal radiation.

"The intensity of the ancient magnetic field was very similar to today's intensity," says John Tarduno, professor of geophysics in the Department of Earth and Environmental Sciences at the University of Rochester. "These values suggest the field was surprisingly strong and robust. It's interesting because it could mean the Earth already had a solid iron inner core 3.2 billion years ago, which is at the very limit of what theoretical models of the Earth's formation could predict."

Geophysicists point to Mars as an example of a planet that likely lost its magnetosphere early in its history, letting the bombardment of radiation from the sun slowly erode its early atmosphere. Theories of Earth's field say it's generated by the convection of our liquid iron core, but scientists have always been curious to know when Earth's solid inner core formed because this process provides an important energy source to power the magnetic field. Scientists are also interested in when Earth's protective magnetic cocoon formed.

But uncovering the intensity of a field 3.2 billion years in the past has proven daunting, and until Tarduno's research, the only data scientists could tease from the rocks suggested the field was perhaps only a tenth as strong as today's.

Tarduno had previously shown that as far back as 2.5 billion years ago, the field was just as intense as it is today, but pushing back another 700 million years in time meant he had to find a way to overcome some special challenges.

The traditional approach to measuring the ancient Earth's magnetic field would not be good enough. The technique was developed more than four decades ago, and has changed little. With the old method, an igneous rock about an inch across is heated and cooled in a chamber that is shielded from magnetic interference. The magnetism is essentially drained from the particles in the rock and then it's refilled while scientists measure how much the particles can hold.

Tarduno, however, isolates choice, individual crystals from a rock, heats them with a laser, and measures their magnetic intensity with a super-sensitive detector called a SQUID—a Superconducting Quantum Interface Device normally used in computing chip design because it's extremely sensitive to the tiniest magnetic fields.

Certain rocks contain tiny crystals like feldspar and quartz—nano-meter sized magnetic inclusions that lock in a record of the Earth's magnetic field as they cool from molten magma to hard rock. Simply finding rocks of this age is difficult enough, but these rocks have also witnessed billions of years of geological activity that could have reheated them and possibly changed their initial magnetic record.

To reduce the chance of this contamination, Tarduno picked out the best preserved grains of feldspar and quartz out of 3.2 billion-year-old granite outcroppings in South Africa. Feldspar and quartz are good preservers of the paleomagnetic record because their minute magnetic inclusions essentially take a snapshot of the field as they cool from a molten state. Tarduno wanted to measure the smallest magnetic inclusions because larger magnetic crystals can lose their original magnetic signature at much lower temperatures, meaning they are more likely to suffer magnetic contamination from later warming geological events.

Once he isolated the ideal crystals, Tarduno employed a carbon dioxide laser to heat individual crystals much more quickly than older methods, further lessening the chance of contamination. With the University's ultra-sensitive SQUID he could measure how much magnetism these individual particles contained.

"The data suggest that the ancient magnetic field strength was at least 50 percent of the present-day field, which typically measures 40 to 60 microteslas," says Tarduno. "This means that a magnetosphere was definitely present, sheltering the Earth 3.2 billion years ago."

To further ensure his readings were accurate, Tarduno also checked the alignment of the magnetism in the particles, which record the polarity of the Earth's field at that time and location. By comparing the polarity to that of other samples of similar age and location, Tarduno could ensure that his measurements were not likely from later geological heating, but truly from 3.2 billion years ago.

Tarduno is now pushing back in time to 3.5 billion-year-old rocks to further investigate when the Earth's inner core first formed, giving new insights into early Earth processes that also may have had an effect on the atmosphere and the development of life on the planet.

Rory Cottrell, post-doctoral student in Tarduno's laboratory, is co-author on the study. This research was funded by the National Science Foundation.

About the University of Rochester

The University of Rochester is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College of Arts, Sciences, and Engineering is complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>