Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps/UCSD geophysicist among international team finding evidence of first plate tectonics

26.03.2007
Observations indicate that plate tectonics began before any currently known structural geological record on Earth

Identification of the oldest preserved pieces of Earth's crust in southern Greenland has provided evidence of active plate tectonics as early as 3.8 billion years ago, according to a report by an international team of geoscientists in the March 23 edition of Science magazine.

The finding pushes back the date of continent-forming processes previously determined as 2.5 billion years ago to a much earlier era considerably closer to Earth's formation some 4.5 billion years ago. Geochemical analysis of rocks has previously suggested an earlier date for plate tectonics, but this is the first study to find physical evidence of tectonics among Earth's oldest known rock structures, according to Hubert Staudigel of Scripps Institution of Oceanography at UC San Diego.

"The fact that this rock structure is so well preserved is particularly lucky," Staudigel said. "The materials were formed as seafloor along a spreading center and accreted to a continental plate and just stuck there, surviving almost unscathed for as long as 3.8 billion years."

The study focuses on an area near the southwestern coast of Greenland where there is a rare outcrop of ancient rock, called the Isua Supracrustal Belt, which have been dated at 3.8 billion years old. The Isua rocks are ophiolites, which have a green hue from the chlorite minerals within them and are found in all major mountain belts, usually located in areas associated with volcanism and plate tectonics. The Isua deposits were first described in the 1960s. They also have been found to contain fossilized evidence of the earliest bacterial life on Earth, also about 3.8 billion years old, in studies conducted in 1999 by Minik Rosing.

The new study reveals the geological structure at Isua contains both seafloor pillow lavas and dikes, or sheets, of basalt that intruded into the pillow lavas after they formed. These features and the chemistry of the ophiolites indicate that the area was formed as the result of seafloor spreading, according to lead author Furnes. Even though the rocks have physically changed over time, it is still possible to see their original characteristics because of the preservation of fine-grained crystals that show they were cooled by contact with surrounding colder rocks, Furnes said.

"To what extent one is able to see an original structure in a highly deformed rock depends basically on the experience of the observer," Furnes said. "In our case we knew what we were looking for, and all of us who did the field work have reasonably good experience with identifying pillow lavas and associated dikes."

The finding of ophiolites in the oldest known rock structures leads the scientists to believe that such rocks have formed throughout Earth's nearly 4.5 billion year history, according to de Wit.

"Our work shows that some form of seafloor spreading and oceanic crust formation occurs as far back in history as geological records go," de Wit said.

Rosing said, "Our paper describes large-scale structural relationships that show the ancient oceanic crust was comparable to the modern crust in its structure and composition and that a section of ancient oceanic crust could be preserved by uplifting onto stable crust, similar to how more modern ophiolite complexes have formed."

The paper also sheds light on the ongoing debate about the oxygen isotope composition of seawater through geological time periods. The reactions of seafloor and seawater largely control the ocean's oxygen isotope makeup, but scientists have been polarized between those that maintain the oxygen isotope content has remained relatively constant and those that argue for variation. According to Muehlenbachs, this work shows that the early ocean had the same or slightly heavier oxygen isotope composition as that of the modern ocean.

"We can conclude from the oxygen isotope analyses of the pillows and dIkes that the earliest ocean had already chemically reacted with the seafloor," Muehlenbachs said. "This has great implications to the historical chemical composition of the oceans and may have played a role in the evolution of life."

The geological processes of the early Earth were largely responsible for the distribution of elements throughout the land, air and oceans, having fundamental consequences for the development of life, according to Staudigel. He said the science team was sampling the Isua Supracrustal Belt looking for chemical or isotopic traces of life in the pillow lavas when they realized the area supplied geological structures proving plate tectonics from the earliest history of Earth.

Chuck Colgan | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>