Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists gauge earthquake hazards through study of precariously balance rocks

02.03.2007
Research by Nevada professors pinpoints certain seismic hazards, past and present, through California rock formations

A seismological research team from the University of Nevada, Reno is finding ways to make precariously balanced rocks talk. In so doing, they are unlocking valuable scientific information in assessing seismic hazards in areas throughout the West.

Their findings are shared in the January-February issue of American Scientist magazine. Scientists believe that zones of precarious rocks – rocks that have come close but haven't tipped over in the wake of a major seismic event – provide important information about seismic risk, its magnitude and its frequency. For a look at the article, click on: http://www.americanscientist.org/

template/AssetDetail/assetid/54437;jsessionid=baa9...?fulltext=true#54485

"There's really no long-term data to test seismic hazards other than precarious rocks," said Matthew Purvance, a postdoctoral scholar in geophysics at the University, who authored the article along with James Brune, professor in the Department of Geological Sciences and past director of the Nevada Seismological Laboratory, and Rasool Anooshehpoor, research professor in the Nevada Seismological Laboratory.

"By studying precariously balanced rocks, it can serve as an indicator that an earthquake of a sufficient size to topple a tippy rock has not occurred … at least for a very long time. We think this is a fundamental story that gives fundamental information on seismic hazards that has never been done before."

The data from the study is important, as it not only tests ground-motion probability, but can help further refine United States Geological Survey hazard methodologies that are used by engineers to formulate building codes. Purvance explained that seismologists and engineers since the late 1960s have increasingly followed a method known as probabilistic seismic-hazard analysis in trying to get a more firm grasp on earthquake probability. This analysis allows researchers to determine the number and magnitude of earthquakes on relevant faults. The study of precarious rocks, which act as "witnesses" to strong seismic events throughout history, has provided scientists an important research window to test the predictions of probability, Purvance said.

The team tested massive rocks of up to 1,000 pounds and more than 10,000 years old, measuring the force and angle it would take to tip them over. One of the more interesting aspects of the study was a technique used by Anooshehpoor, which measured the restoring force that has allowed the rock to remain upright through centuries of wear and the force of past strong seismic events.

Anooshehpoor's technique allowed the team to measure a tipping boulder's restoring force with a digital load cell and the rock's tilt with an inclineometer. The work wasn't easy. By pushing and pulling on the massive, bus-sized rocks with a series of wire cables, nylon straps, chains, pulleys, winches, hydraulic pistons, ground anchors and 4 by 4 blocks of wood, the team was able to record data for precarious rocks that had never been tested before.

"It gives us very useful information about the precarious rocks and further adds to the knowledge of gauging earthquake hazards," Purvance said, noting that it was work by Brune in the early 1990s with precarious rocks in southern California that led to the rocks becoming more widely recognized as an accurate barometer of seismic force and occurrence. "These measurements help better explain the story of how the rock has managed to withstand some of the forces of time and nature."

Added Anooshehpoor: "The rocks that we have studied are from large earthquakes and are so rare. If throughout history the world had tons of instruments and recorded many of these earthquakes, we probably wouldn't have the need to study precarious rocks. The lack of data has been a major problem in estimating ground motion. With this study, we've been provided with another opportunity to give the engineers the right information they need."

John Trent | EurekAlert!
Further information:
http://www.unr.edu

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>