Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists gauge earthquake hazards through study of precariously balance rocks

02.03.2007
Research by Nevada professors pinpoints certain seismic hazards, past and present, through California rock formations

A seismological research team from the University of Nevada, Reno is finding ways to make precariously balanced rocks talk. In so doing, they are unlocking valuable scientific information in assessing seismic hazards in areas throughout the West.

Their findings are shared in the January-February issue of American Scientist magazine. Scientists believe that zones of precarious rocks – rocks that have come close but haven't tipped over in the wake of a major seismic event – provide important information about seismic risk, its magnitude and its frequency. For a look at the article, click on: http://www.americanscientist.org/

template/AssetDetail/assetid/54437;jsessionid=baa9...?fulltext=true#54485

"There's really no long-term data to test seismic hazards other than precarious rocks," said Matthew Purvance, a postdoctoral scholar in geophysics at the University, who authored the article along with James Brune, professor in the Department of Geological Sciences and past director of the Nevada Seismological Laboratory, and Rasool Anooshehpoor, research professor in the Nevada Seismological Laboratory.

"By studying precariously balanced rocks, it can serve as an indicator that an earthquake of a sufficient size to topple a tippy rock has not occurred … at least for a very long time. We think this is a fundamental story that gives fundamental information on seismic hazards that has never been done before."

The data from the study is important, as it not only tests ground-motion probability, but can help further refine United States Geological Survey hazard methodologies that are used by engineers to formulate building codes. Purvance explained that seismologists and engineers since the late 1960s have increasingly followed a method known as probabilistic seismic-hazard analysis in trying to get a more firm grasp on earthquake probability. This analysis allows researchers to determine the number and magnitude of earthquakes on relevant faults. The study of precarious rocks, which act as "witnesses" to strong seismic events throughout history, has provided scientists an important research window to test the predictions of probability, Purvance said.

The team tested massive rocks of up to 1,000 pounds and more than 10,000 years old, measuring the force and angle it would take to tip them over. One of the more interesting aspects of the study was a technique used by Anooshehpoor, which measured the restoring force that has allowed the rock to remain upright through centuries of wear and the force of past strong seismic events.

Anooshehpoor's technique allowed the team to measure a tipping boulder's restoring force with a digital load cell and the rock's tilt with an inclineometer. The work wasn't easy. By pushing and pulling on the massive, bus-sized rocks with a series of wire cables, nylon straps, chains, pulleys, winches, hydraulic pistons, ground anchors and 4 by 4 blocks of wood, the team was able to record data for precarious rocks that had never been tested before.

"It gives us very useful information about the precarious rocks and further adds to the knowledge of gauging earthquake hazards," Purvance said, noting that it was work by Brune in the early 1990s with precarious rocks in southern California that led to the rocks becoming more widely recognized as an accurate barometer of seismic force and occurrence. "These measurements help better explain the story of how the rock has managed to withstand some of the forces of time and nature."

Added Anooshehpoor: "The rocks that we have studied are from large earthquakes and are so rare. If throughout history the world had tons of instruments and recorded many of these earthquakes, we probably wouldn't have the need to study precarious rocks. The lack of data has been a major problem in estimating ground motion. With this study, we've been provided with another opportunity to give the engineers the right information they need."

John Trent | EurekAlert!
Further information:
http://www.unr.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>