Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Life cycle mapped of unique organism in extreme environments

Microorganisms that thrive under extreme conditions, such as hot acid, not only can be used as a model for how life got started on earth or can emerge on other planets but can also provide knowledge about humans. A team of researchers at Uppsala University have studied some 2,000 genes in such an organism and mapped its life cycle.

The findings are being published this week in an article in Proceedings of the National Academy of Sciences in the U.S. With the aid of microarray technology, the scientists have managed to monitor the expression of all of the roughly 2,000 genes in microorganisms that grow at 80o C, so-called hyperthermophiles.

These organisms, from the Sulfolobus genus, represent life’s third evolutionary line, the archaea, and are found in hots springs all over the world, for instance in the vicinity of the volcano Vesuvius outside Naples, in Iceland, and in Yellowstone National Park in the U.S. The extreme living conditions, where these organisms grow optimally in hot acid, make them interesting not only because of their unique biology but also as a model system in theories of the origins of life in warm environments during the early development of the earth.

“Knowledge of these organisms is also of interest in our search for life on other planets and moons, with their extreme environments,” says Rolf Bernander, professor of molecular evolution at the Center for Evolutionary Biology (EBC), who is responsible for the study, together with doctoral candidate Magnus Lundgren.

They have identified some 160 genes that are specifically activated at various stages when the cells produce a new copy of the chromosome (replication), segregate two daughter chromosomes (mitosis), and then divide (cytokinesis). The team has previously shown that the chromosomes in Sulfolubus species, unlike those in all other species that lack a cell nucleus, are replicated from three different starting points instead of a single one. This was surprising, since this was previously seen as one of the most important borderlines between organisms with or without cell nuclei. Thus, these unique organisms lack cell nuclei, but nevertheless evince replication and cell cycles similar to those of higher organisms.

“Together with the fact that many of archaea genes are very similar to their counterparts in higher organisms, this means that the findings may be of significance in our understanding of cell growth and cell-cycle regulation in humans, for example,” says Rolf Bernander.

Anneli Waara | alfa
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>