Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life cycle mapped of unique organism in extreme environments

19.02.2007
Microorganisms that thrive under extreme conditions, such as hot acid, not only can be used as a model for how life got started on earth or can emerge on other planets but can also provide knowledge about humans. A team of researchers at Uppsala University have studied some 2,000 genes in such an organism and mapped its life cycle.

The findings are being published this week in an article in Proceedings of the National Academy of Sciences in the U.S. With the aid of microarray technology, the scientists have managed to monitor the expression of all of the roughly 2,000 genes in microorganisms that grow at 80o C, so-called hyperthermophiles.

These organisms, from the Sulfolobus genus, represent life’s third evolutionary line, the archaea, and are found in hots springs all over the world, for instance in the vicinity of the volcano Vesuvius outside Naples, in Iceland, and in Yellowstone National Park in the U.S. The extreme living conditions, where these organisms grow optimally in hot acid, make them interesting not only because of their unique biology but also as a model system in theories of the origins of life in warm environments during the early development of the earth.

“Knowledge of these organisms is also of interest in our search for life on other planets and moons, with their extreme environments,” says Rolf Bernander, professor of molecular evolution at the Center for Evolutionary Biology (EBC), who is responsible for the study, together with doctoral candidate Magnus Lundgren.

They have identified some 160 genes that are specifically activated at various stages when the cells produce a new copy of the chromosome (replication), segregate two daughter chromosomes (mitosis), and then divide (cytokinesis). The team has previously shown that the chromosomes in Sulfolubus species, unlike those in all other species that lack a cell nucleus, are replicated from three different starting points instead of a single one. This was surprising, since this was previously seen as one of the most important borderlines between organisms with or without cell nuclei. Thus, these unique organisms lack cell nuclei, but nevertheless evince replication and cell cycles similar to those of higher organisms.

“Together with the fact that many of archaea genes are very similar to their counterparts in higher organisms, this means that the findings may be of significance in our understanding of cell growth and cell-cycle regulation in humans, for example,” says Rolf Bernander.

Anneli Waara | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/0611333104v1
http://www.uu.se

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>