Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use seismic waves to locate missing rock under Tibet

09.02.2007
Geologists at the University of Illinois at Urbana-Champaign have located a huge chunk of Earth's lithosphere that went missing 15 million years ago.

By finding the massive block of errant rock beneath Tibet, the researchers are helping solve a long-standing mystery, and clarifying how continents behave when they collide.

The Tibetan Plateau and adjacent Himalayan Mountains were created by the movements of vast tectonic plates that make up Earth's outermost layer of rocks, the lithosphere. About 55 million years ago, the Indian plate crashed into the Eurasian plate, forcing the land to slowly buckle and rise. Containing nearly one-tenth the area of the continental U.S., and averaging 16,000 feet in elevation, the Tibetan Plateau is the world's largest and highest plateau.

Tectonic models of Tibet vary greatly, including ideas such as subduction of the Eurasian plate, subduction of the Indian plate, and thickening of the Eurasian lithosphere. According to this last model, the thickened lithosphere became unstable, and a piece broke off and sank into the deep mantle.

"While attached, this immense piece of mantle lithosphere under Tibet acted as an anchor, holding the land above in place," said Wang-Ping Chen, a professor of geophysics at the U. of I. "Then, about 15 million years ago, the chain broke and the land rose, further raising the high plateau."

Until recently, this tantalizing theory lacked any clear observation to support it. Then doctoral student Tai-Lin (Ellen) Tseng and Chen found the missing anchor.

"This remnant of detached lithosphere provides key evidence for a direct connection between continental collision near the surface and deep-seated dynamics in the mantle," Tseng said.

"Moreover, mantle dynamics ultimately drives tectonism, so the fate of mantle lithosphere under Tibet is fundamental to understanding the full dynamics of collision."

Through a project called Hi-CLIMB -- an integrated study of the Himalayan-Tibetan Continental Lithosphere during Mountain Building, Tseng analyzed seismic signals collected at a number of permanent stations and at many temporary stations to search for the missing mass.

Hi-CLIMB created a line of seismic monitoring stations that extended from the plains of India, through Nepal, across the Himalayas and into central Tibet. "With more than 200 station deployments, Hi-CLIMB is the largest broadband (high-resolution) seismic experiment conducted to date," said Chen, who is one of the project's two principal investigators.

Using high-resolution seismic profiles recorded at many stations, Tseng precisely measured the velocities of seismic waves traveling beneath the region at depths of 300 to 700 kilometers. Because seismic waves travel faster through colder rock, Tseng was able to discern the positions of detached, cold lithosphere from her data. "We not only found the missing piece of cold lithosphere, but also were able to reconstruct the positions of tectonic plates back to 15 million years ago," Tseng said. "It therefore seems much more likely that instability in the thickening lithosphere was partially responsible for forming the Tibetan Plateau, rather than the wholesale subduction of one of the tectonic plates."

Other evidence, including the age and the distribution of volcanic rocks and extrapolation of current ground motion in Tibet, the researchers say, also indicates the remnant lithosphere detached about 15 million years ago.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>