Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Folded sediment unusual in Sumatran tsunami area

06.02.2007
Sediment folding may have added to the exceptionally large tsunami that struck Sumatra on Dec. 26, 2004, according to an international team of geologists. "Tsunami models consider the rebound of the plate during the earthquake, but do not include permanent deformation, like folding, of the upper plate." says Dr. Donald M. Fisher, professor of geosciences at Penn State.

Tsunamis propagate only when earthquakes occur under water and have an up and down component to their motion. Earthquakes where tectonic plate boundaries slide side by side, do not cause tsunamis. Subduction zone earthquakes, those areas where one plate moves beneath another, are prime candidates for tsunami generation, but if the two plates slide smoothly across each other, water is displaced very slowly.

"If a fault is not locked, the two plates just creep along and there is no big upsurge," says Fisher. "However, if they are locked, the bottom plate drags the top plate along until it snaps back and quickly displaces water."

An expedition, organized by the Discovery Channel and BBC-TV, explored the 136-mile area of the fault using seismic reflection, a system where a sound source activates beneath the water and researchers record the time the sound takes to reach the underwater receivers. This process provides a detailed map of the sea bottom and the terrain beneath it. The researchers reported their work in a recent issue of Geology.

The researchers, who included Fisher; David Mosher, Geological Survey of Canada – Atlantic who supplied the seismic reflection equipment; James A. Austin Jr., senior research associate and Sean P.S. Gulick, research associate, University of Texas, Austin; Timothy Masterlark, assistant professor, University of Alabama, and Kathryn Moran, associate professor, University of Rhode Island, found that the shape of the upper plate boundary was unusual.

"The fault line does not look as we assumed it did," says Fisher. "We expected a wedge with one plate going under the other."

The Sumatran plate boundary looked, in many ways, like the cabling on a suspension bridge. The area near the edge did form a wedge, but the central portion was framed by two peaks with a sway or saddle in the middle, with the farthest part then sloped downward. The central swayback portion was also populated by bumps located about 8 miles apart across its length.

"We also found that this is a blind fault, one that is not visible at the surface because it is covered in a deep layer of silt and sediment," says Fisher. "The peaks every 8 miles were caused when an earthquake folded the sediment."

These peaks add to the amount of water displaced when the entire plate edge snaps back. The fold spacing shows that the sediments are from 1 to 3 miles deep. The researchers suggest that the sediment deforms independently from the actual plate boundary.

The researchers conclude that the combination of processes, plate edge movement and snap back and the deformation of the sediment combines to enhance the uplift on a substantial portion of the fault and has important implications for evaluation of the 2004 tsunami and others that occur in this location.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>