Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Folded sediment unusual in Sumatran tsunami area

06.02.2007
Sediment folding may have added to the exceptionally large tsunami that struck Sumatra on Dec. 26, 2004, according to an international team of geologists. "Tsunami models consider the rebound of the plate during the earthquake, but do not include permanent deformation, like folding, of the upper plate." says Dr. Donald M. Fisher, professor of geosciences at Penn State.

Tsunamis propagate only when earthquakes occur under water and have an up and down component to their motion. Earthquakes where tectonic plate boundaries slide side by side, do not cause tsunamis. Subduction zone earthquakes, those areas where one plate moves beneath another, are prime candidates for tsunami generation, but if the two plates slide smoothly across each other, water is displaced very slowly.

"If a fault is not locked, the two plates just creep along and there is no big upsurge," says Fisher. "However, if they are locked, the bottom plate drags the top plate along until it snaps back and quickly displaces water."

An expedition, organized by the Discovery Channel and BBC-TV, explored the 136-mile area of the fault using seismic reflection, a system where a sound source activates beneath the water and researchers record the time the sound takes to reach the underwater receivers. This process provides a detailed map of the sea bottom and the terrain beneath it. The researchers reported their work in a recent issue of Geology.

The researchers, who included Fisher; David Mosher, Geological Survey of Canada – Atlantic who supplied the seismic reflection equipment; James A. Austin Jr., senior research associate and Sean P.S. Gulick, research associate, University of Texas, Austin; Timothy Masterlark, assistant professor, University of Alabama, and Kathryn Moran, associate professor, University of Rhode Island, found that the shape of the upper plate boundary was unusual.

"The fault line does not look as we assumed it did," says Fisher. "We expected a wedge with one plate going under the other."

The Sumatran plate boundary looked, in many ways, like the cabling on a suspension bridge. The area near the edge did form a wedge, but the central portion was framed by two peaks with a sway or saddle in the middle, with the farthest part then sloped downward. The central swayback portion was also populated by bumps located about 8 miles apart across its length.

"We also found that this is a blind fault, one that is not visible at the surface because it is covered in a deep layer of silt and sediment," says Fisher. "The peaks every 8 miles were caused when an earthquake folded the sediment."

These peaks add to the amount of water displaced when the entire plate edge snaps back. The fold spacing shows that the sediments are from 1 to 3 miles deep. The researchers suggest that the sediment deforms independently from the actual plate boundary.

The researchers conclude that the combination of processes, plate edge movement and snap back and the deformation of the sediment combines to enhance the uplift on a substantial portion of the fault and has important implications for evaluation of the 2004 tsunami and others that occur in this location.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>