Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dig deeply to seek life on Mars

29.01.2007
Probes seeking life on Mars must dig deeply into young craters, gullies, or recently exposed ice to have a chance of finding any living cells that were not annihilated by radiation, researchers report in a new study. One promising place to look for them is within the ice at Elysium, site of a recently discovered frozen sea, they say.

Current probes designed to find life on Mars cannot drill deeply enough to find living cells that may exist well below the surface, according to the study. Although these drills may yet find signs that life once existed on Mars, the researchers say, cellular life could not survive incoming radiation within several meters [yards] of the surface. This puts any living cells beyond the reach of today's best drills.

The study, to be published 30 January in the journal Geophysical Research Letters, maps cosmic radiation levels at various depths, taking into account surface conditions in various areas of Mars. The lead author, Lewis Dartnell of University College London, said: "Finding hints that life once existed--proteins, DNA fragments, or fossils--would be a major discovery in itself, but the Holy Grail for astrobiologists is finding a living cell that we can warm up, feed nutrients, and reawaken for studying."

"Finding life on Mars depends on liquid water surfacing on Mars," Dartnell added, "but the last time liquid water was widespread on Mars was billions of years ago. Even the hardiest cells we know of could not possibly survive the cosmic radiation levels near the surface of Mars for that long."

Unlike Earth, Mars is not protected by a global magnetic field or thick atmosphere, and for billions of years it has been open to radiation from space. The researchers developed a radiation dose model and quantified variations in solar and galactic radiation that penetrates the thin Martian atmosphere down to the surface and underground. They tested three surface soil scenarios and calculated particle energies and radiation doses both on the surface and at various depths underground, allowing them to estimate the survival times of any cells.

The team found that the best places to look for living cells on Mars would be within the ice at Elysium, because the frozen sea is relatively recent--it is thought to have surfaced in the last five million years--and so has been exposed to radiation for a relatively short period of time. Even here, though, any surviving cells would be out of the reach of current drills. Other ideal sites include young craters, because the recently impacted surface has been exposed to less radiation, and gullies recently discovered in the sides of craters. Those channels may have flowed with water in the last five years and brought cells to the surface from deep underground.

The study was funded by the United Kingdom's Engineering and Physical Sciences Research Council (EPSRC), the Swiss National Science Foundation, and the Swiss State Secretariat for Education and Research.

Peter Weiss | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>