Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The winds of change

24.01.2007
Dartmouth researchers learn that North America's wind patterns have shifted significantly in the past 30,000 years

Dartmouth researchers have learned that the prevailing winds in the mid latitudes of North America, which now blow from the west, once blew from the east. They reached this conclusion by analyzing 14,000- to 30,000-year-old wood samples from areas in the mid-latitudes of North America (40-50°N), which represents the region north of Denver and Philadelphia and south of Winnipeg and Vancouver.

The researchers report their findings online on Jan. 23 in the journal Geology, published by the Geological Society of America.

"Today in the mid-latitude zone of North America, marine moisture is transported either from the west coast by westerly winds, or from both the west and east coasts by storms," says Xiahong Feng, the paper's lead author and a professor of earth sciences. "In this study, we found evidence that during the last glacial period, about 14-36 thousand years ago, the prevailing wind in this zone was easterly, and marine moisture came predominantly from the East Coast."

Feng explains that global climate change is often manifested by changes in general atmospheric circulation, i.e. winds, and this results in changing temperature and precipitation patterns. Clues of past climates usually hint at temperature and precipitation changes, but this is the first time that changing continental wind patterns have been reconstructed.

The researchers gathered their evidence using oxygen and hydrogen isotopic compositions of cellulose extracted from ancient wood. Feng and her team interpret the historic prevailing easterlies to be a result of a growing and intensifying northern circumpolar vortex, which was influenced by the powerful Laurentide Ice Sheet, an enormous mass of ice that covered a great deal of northern North America. Under this circulation regime, the jet stream shifted southward, and as a result, the Pacific Northwest received much less marine moisture from the Pacific. This is consistent with earlier studies of vegetation in the Pacific Northwest, indicating that the region was significantly drier during the last glaciation.

Dartmouth researchers look at ancient wood to determine 30,000-year-old wind patterns.

"This study is likely to open up new avenues of research based on oxygen and hydrogen isotopes in old wood," says Feng. "Climate change involves interactions among temperature, precipitation, and wind, but until now research has rarely been able to observe or confirm prehistoric winds and their continental-scale patterns. In the future, studies using this methodology will be able to look into ancient climates through a new window, and test hypotheses about climate change mechanisms. Such studies can potentially lead to more realistic formulations of future climate scenarios and better evaluations of their plausibility."

In addition to Xiahong Feng, who also holds the Frederick Hall Professorship in Mineralogy and Geology at Dartmouth, other authors on the paper include: Allison L. Reddington, a member of the Dartmouth Class of 2004; Anthony M. Faiia, Dartmouth research associate; Eric S. Posmentier, adjunct professor of earth sciences at Dartmouth; Yong Shu, Dartmouth PhD candidate; and Xiaomei Xu, from the Earth System Science Department at the University of California, Irvine.

"This study began as Allison Reddington's undergraduate honors thesis," says Feng. "This exemplifies the extraordinary opportunities that undergraduates at Dartmouth have to become integral parts of research groups."

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>