Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The winds of change

24.01.2007
Dartmouth researchers learn that North America's wind patterns have shifted significantly in the past 30,000 years

Dartmouth researchers have learned that the prevailing winds in the mid latitudes of North America, which now blow from the west, once blew from the east. They reached this conclusion by analyzing 14,000- to 30,000-year-old wood samples from areas in the mid-latitudes of North America (40-50°N), which represents the region north of Denver and Philadelphia and south of Winnipeg and Vancouver.

The researchers report their findings online on Jan. 23 in the journal Geology, published by the Geological Society of America.

"Today in the mid-latitude zone of North America, marine moisture is transported either from the west coast by westerly winds, or from both the west and east coasts by storms," says Xiahong Feng, the paper's lead author and a professor of earth sciences. "In this study, we found evidence that during the last glacial period, about 14-36 thousand years ago, the prevailing wind in this zone was easterly, and marine moisture came predominantly from the East Coast."

Feng explains that global climate change is often manifested by changes in general atmospheric circulation, i.e. winds, and this results in changing temperature and precipitation patterns. Clues of past climates usually hint at temperature and precipitation changes, but this is the first time that changing continental wind patterns have been reconstructed.

The researchers gathered their evidence using oxygen and hydrogen isotopic compositions of cellulose extracted from ancient wood. Feng and her team interpret the historic prevailing easterlies to be a result of a growing and intensifying northern circumpolar vortex, which was influenced by the powerful Laurentide Ice Sheet, an enormous mass of ice that covered a great deal of northern North America. Under this circulation regime, the jet stream shifted southward, and as a result, the Pacific Northwest received much less marine moisture from the Pacific. This is consistent with earlier studies of vegetation in the Pacific Northwest, indicating that the region was significantly drier during the last glaciation.

Dartmouth researchers look at ancient wood to determine 30,000-year-old wind patterns.

"This study is likely to open up new avenues of research based on oxygen and hydrogen isotopes in old wood," says Feng. "Climate change involves interactions among temperature, precipitation, and wind, but until now research has rarely been able to observe or confirm prehistoric winds and their continental-scale patterns. In the future, studies using this methodology will be able to look into ancient climates through a new window, and test hypotheses about climate change mechanisms. Such studies can potentially lead to more realistic formulations of future climate scenarios and better evaluations of their plausibility."

In addition to Xiahong Feng, who also holds the Frederick Hall Professorship in Mineralogy and Geology at Dartmouth, other authors on the paper include: Allison L. Reddington, a member of the Dartmouth Class of 2004; Anthony M. Faiia, Dartmouth research associate; Eric S. Posmentier, adjunct professor of earth sciences at Dartmouth; Yong Shu, Dartmouth PhD candidate; and Xiaomei Xu, from the Earth System Science Department at the University of California, Irvine.

"This study began as Allison Reddington's undergraduate honors thesis," says Feng. "This exemplifies the extraordinary opportunities that undergraduates at Dartmouth have to become integral parts of research groups."

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>