Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special issue of BSSA focuses on 2004 Sumatra earthquake

11.01.2007
The great Sumatra-Andaman earthquake of 2004 is the best recorded large earthquake in history and has revealed the extent of study still necessary to understand such devastating events. New data overturn the commonly held view that great earthquakes only occur in fast, young subduction zones.

The 2004 earthquake is the focus of the January special issue of the Bulletin of the Seismological Society of America (BSSA), in which scientists present research and analyses about the current state of earthquakes and tsunamis, as learned from the Sumatra--Andaman event.

"The 2004 earthquake necessitates a revisitation of commonly accepted views on the relationship between the size of great earthquakes and physical characteristics of subduction zones," write guest editors Susan L Bilek, Ph.D., of New Mexico Tech; Kenji Satake, Ph.D., of Active Fault Research Center in Japan; and Kerry Sieh, Ph.D., of California Institute of Technology.

A great earthquake is defined as having a moment magnitude greater than 9.0. The moment magnitude scale refers to the physical size of fault rupture and the movement across the fault, thereby measuring the strength of the earthquake. Prior to the 2004 earthquake, scientists assumed that great earthquakes only occurred at the site of a young subduction zone, where one tectonic plate is pushed quickly underneath another one. Scientists are rethinking their theories, based on data collected after the earthquake.

The 2004 Sumatra-Andaman earthquake is the best recorded seismic event in history. With a Moment magnitude of 9.1 - 9.3, it ranks as the third largest earthquake in recorded history and the first to supply sufficient data to allow for a detailed analysis of what exactly occurred at the source of rupture. This issue's articles by Rhie et al., and Chlieh et al., combine several different datasets to present a more complete picture of the fault rupture.

In order to evaluate the 2004 great earthquake, scientists took advantage of new technology, such as GPS, satellite telemetry, field tests, and unique datasets developed to understand this giant earthquake and subsequent tsunami. Both the duration of the earthquake, nearly 600 seconds, and the length of the rupture, between 1250 km and 1600 km, exceeded any previously recorded. Limited historical data had suggested that such a powerful earthquake was not possible at this site.

"Because of the long duration and size of the earthquake, scientists have developed new techniques to analyze earthquakes such as these," explains Bilek. "Many of these new techniques incorporate a range of the new technologies, thus giving a better picture of what happened on the fault."

The special issue features research on the key aspects of the great earthquake. Highlights include an article by authors Stein and Okal, who suggest that the correlation between great earthquakes and fast, young subduction zones disappears when a longer time frame is considered. The short earthquake history sampled doesn't address the rarity of earthquakes with a magnitude >9.0, making it difficult to assess risk of great earthquakes in subduction zones elsewhere.

Scientists seek to understand this great earthquake and tsunami in order to better prepare for similar events. Authors Rajendran et al., suggest that a similar event in the exact location is unlikely. Results from preliminary study of the Andaman Islands and the coast of India suggest that great earthquakes and resulting tsunami are quite rare. Based on the evaluation of sand layers mixed with archeological ruins on the Indian coast, authors suggest that the previous great earthquake and tsunami would likely have occurred 1000 years ago.

The guest editors write of the potential new understanding that will result from focusing on the 2004 earthquake: "Hopefully, the legacy of the science presented in this volume will be a greater understanding of earthquake and tsunami processes that will be useful in advancing the resilience of our communities to Nature's violence."

Nan Broadbent | EurekAlert!
Further information:
http://www.msn.com

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>