Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special issue of BSSA focuses on 2004 Sumatra earthquake

11.01.2007
The great Sumatra-Andaman earthquake of 2004 is the best recorded large earthquake in history and has revealed the extent of study still necessary to understand such devastating events. New data overturn the commonly held view that great earthquakes only occur in fast, young subduction zones.

The 2004 earthquake is the focus of the January special issue of the Bulletin of the Seismological Society of America (BSSA), in which scientists present research and analyses about the current state of earthquakes and tsunamis, as learned from the Sumatra--Andaman event.

"The 2004 earthquake necessitates a revisitation of commonly accepted views on the relationship between the size of great earthquakes and physical characteristics of subduction zones," write guest editors Susan L Bilek, Ph.D., of New Mexico Tech; Kenji Satake, Ph.D., of Active Fault Research Center in Japan; and Kerry Sieh, Ph.D., of California Institute of Technology.

A great earthquake is defined as having a moment magnitude greater than 9.0. The moment magnitude scale refers to the physical size of fault rupture and the movement across the fault, thereby measuring the strength of the earthquake. Prior to the 2004 earthquake, scientists assumed that great earthquakes only occurred at the site of a young subduction zone, where one tectonic plate is pushed quickly underneath another one. Scientists are rethinking their theories, based on data collected after the earthquake.

The 2004 Sumatra-Andaman earthquake is the best recorded seismic event in history. With a Moment magnitude of 9.1 - 9.3, it ranks as the third largest earthquake in recorded history and the first to supply sufficient data to allow for a detailed analysis of what exactly occurred at the source of rupture. This issue's articles by Rhie et al., and Chlieh et al., combine several different datasets to present a more complete picture of the fault rupture.

In order to evaluate the 2004 great earthquake, scientists took advantage of new technology, such as GPS, satellite telemetry, field tests, and unique datasets developed to understand this giant earthquake and subsequent tsunami. Both the duration of the earthquake, nearly 600 seconds, and the length of the rupture, between 1250 km and 1600 km, exceeded any previously recorded. Limited historical data had suggested that such a powerful earthquake was not possible at this site.

"Because of the long duration and size of the earthquake, scientists have developed new techniques to analyze earthquakes such as these," explains Bilek. "Many of these new techniques incorporate a range of the new technologies, thus giving a better picture of what happened on the fault."

The special issue features research on the key aspects of the great earthquake. Highlights include an article by authors Stein and Okal, who suggest that the correlation between great earthquakes and fast, young subduction zones disappears when a longer time frame is considered. The short earthquake history sampled doesn't address the rarity of earthquakes with a magnitude >9.0, making it difficult to assess risk of great earthquakes in subduction zones elsewhere.

Scientists seek to understand this great earthquake and tsunami in order to better prepare for similar events. Authors Rajendran et al., suggest that a similar event in the exact location is unlikely. Results from preliminary study of the Andaman Islands and the coast of India suggest that great earthquakes and resulting tsunami are quite rare. Based on the evaluation of sand layers mixed with archeological ruins on the Indian coast, authors suggest that the previous great earthquake and tsunami would likely have occurred 1000 years ago.

The guest editors write of the potential new understanding that will result from focusing on the 2004 earthquake: "Hopefully, the legacy of the science presented in this volume will be a greater understanding of earthquake and tsunami processes that will be useful in advancing the resilience of our communities to Nature's violence."

Nan Broadbent | EurekAlert!
Further information:
http://www.msn.com

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>