Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equatorial water belt slackens

07.02.2002


30 years of slowing Pacific circulation may have changed climate


Less carbon may have reached the atmosphere from the Pacific Ocean surface over the past two decades
© Noella Ballenger



A recent slowing in the circulation of Pacific Ocean waters could have raised Pacific sea surface temperatures. It may even mean that less carbon has reached the atmosphere from the ocean surface over the past two decades.

Across the Pacific, water circulates in two giant loops in the Northern and Southern Hemispheres. It flows from the subtropics to the tropics about at a depth of 100-400 metres, rises to the surface at the equator, and heads back towards the poles at the surface.


This circulation has changed since the 1970s, say Michael McPhaden of the Pacific Marine Environmental Laboratory, Seattle, Washington, and his colleague Dongxiao Zhang of the University of Washington in Seattle1. Thirty years down the line, the amount of subtropical water that reaches the equatorial Pacific sea surface has dropped by 25%.

It had already been noticed that the temperature of the sea surface at the equatorial Pacific has risen by 0.8 oC over the past 30 years. This had puzzled researchers, as cloudy skies in this area have become more frequent over the past 50 years, providing cooling shade. McPhaden and Zhang’s finding explains the warming: the supply of cool subtropical water has dropped.

Getting warmer

The warming that sluggish circulation has brought to the equatorial Pacific may have something to do with the shift in the mid-1970s towards stronger, longer and more frequent El Niño events, in which ocean temperatures and wind patterns fluctuate.

El Niño events cause erratic weather around the world, including droughts in Southeast Africa and floods in parts of South America. But the link between decade-long circulation changes and shifts in the three- to seven-year El Niño cycles needs further investigation.

Nor can connections to global warming be untangled yet. "The beauty of the study is that it works with observations. So we know that the slowing effect is real and not just speculation," says Richard Kleeman, of the Center for Atmosphere Ocean Science, New York.

But it is too early, he thinks, to decide whether - or indeed how - the new results might tie in with the changing climate. "It is a very complex system," he says.

One potential connection lies in the carbon cycle. "The tropical Pacific is the largest oceanic source of carbon dioxide to the atmosphere," McPhaden and Zhang point out. The slowing circulation implies that less of this greenhouse gas has reached the ocean surface over the past decade. So, in the short term, the slowing circulation has helped to keep global warming at bay.

References

  1. McPhaden, M. J. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603 - 3608, (2002).

HEIKE LANGENBERG | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-8.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>