Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equatorial water belt slackens

07.02.2002


30 years of slowing Pacific circulation may have changed climate


Less carbon may have reached the atmosphere from the Pacific Ocean surface over the past two decades
© Noella Ballenger



A recent slowing in the circulation of Pacific Ocean waters could have raised Pacific sea surface temperatures. It may even mean that less carbon has reached the atmosphere from the ocean surface over the past two decades.

Across the Pacific, water circulates in two giant loops in the Northern and Southern Hemispheres. It flows from the subtropics to the tropics about at a depth of 100-400 metres, rises to the surface at the equator, and heads back towards the poles at the surface.


This circulation has changed since the 1970s, say Michael McPhaden of the Pacific Marine Environmental Laboratory, Seattle, Washington, and his colleague Dongxiao Zhang of the University of Washington in Seattle1. Thirty years down the line, the amount of subtropical water that reaches the equatorial Pacific sea surface has dropped by 25%.

It had already been noticed that the temperature of the sea surface at the equatorial Pacific has risen by 0.8 oC over the past 30 years. This had puzzled researchers, as cloudy skies in this area have become more frequent over the past 50 years, providing cooling shade. McPhaden and Zhang’s finding explains the warming: the supply of cool subtropical water has dropped.

Getting warmer

The warming that sluggish circulation has brought to the equatorial Pacific may have something to do with the shift in the mid-1970s towards stronger, longer and more frequent El Niño events, in which ocean temperatures and wind patterns fluctuate.

El Niño events cause erratic weather around the world, including droughts in Southeast Africa and floods in parts of South America. But the link between decade-long circulation changes and shifts in the three- to seven-year El Niño cycles needs further investigation.

Nor can connections to global warming be untangled yet. "The beauty of the study is that it works with observations. So we know that the slowing effect is real and not just speculation," says Richard Kleeman, of the Center for Atmosphere Ocean Science, New York.

But it is too early, he thinks, to decide whether - or indeed how - the new results might tie in with the changing climate. "It is a very complex system," he says.

One potential connection lies in the carbon cycle. "The tropical Pacific is the largest oceanic source of carbon dioxide to the atmosphere," McPhaden and Zhang point out. The slowing circulation implies that less of this greenhouse gas has reached the ocean surface over the past decade. So, in the short term, the slowing circulation has helped to keep global warming at bay.

References

  1. McPhaden, M. J. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603 - 3608, (2002).

HEIKE LANGENBERG | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-8.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>