Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equatorial water belt slackens

07.02.2002


30 years of slowing Pacific circulation may have changed climate


Less carbon may have reached the atmosphere from the Pacific Ocean surface over the past two decades
© Noella Ballenger



A recent slowing in the circulation of Pacific Ocean waters could have raised Pacific sea surface temperatures. It may even mean that less carbon has reached the atmosphere from the ocean surface over the past two decades.

Across the Pacific, water circulates in two giant loops in the Northern and Southern Hemispheres. It flows from the subtropics to the tropics about at a depth of 100-400 metres, rises to the surface at the equator, and heads back towards the poles at the surface.


This circulation has changed since the 1970s, say Michael McPhaden of the Pacific Marine Environmental Laboratory, Seattle, Washington, and his colleague Dongxiao Zhang of the University of Washington in Seattle1. Thirty years down the line, the amount of subtropical water that reaches the equatorial Pacific sea surface has dropped by 25%.

It had already been noticed that the temperature of the sea surface at the equatorial Pacific has risen by 0.8 oC over the past 30 years. This had puzzled researchers, as cloudy skies in this area have become more frequent over the past 50 years, providing cooling shade. McPhaden and Zhang’s finding explains the warming: the supply of cool subtropical water has dropped.

Getting warmer

The warming that sluggish circulation has brought to the equatorial Pacific may have something to do with the shift in the mid-1970s towards stronger, longer and more frequent El Niño events, in which ocean temperatures and wind patterns fluctuate.

El Niño events cause erratic weather around the world, including droughts in Southeast Africa and floods in parts of South America. But the link between decade-long circulation changes and shifts in the three- to seven-year El Niño cycles needs further investigation.

Nor can connections to global warming be untangled yet. "The beauty of the study is that it works with observations. So we know that the slowing effect is real and not just speculation," says Richard Kleeman, of the Center for Atmosphere Ocean Science, New York.

But it is too early, he thinks, to decide whether - or indeed how - the new results might tie in with the changing climate. "It is a very complex system," he says.

One potential connection lies in the carbon cycle. "The tropical Pacific is the largest oceanic source of carbon dioxide to the atmosphere," McPhaden and Zhang point out. The slowing circulation implies that less of this greenhouse gas has reached the ocean surface over the past decade. So, in the short term, the slowing circulation has helped to keep global warming at bay.

References

  1. McPhaden, M. J. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603 - 3608, (2002).

HEIKE LANGENBERG | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-8.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>