Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide emissions predicted to reduce density of Earth's outermost atmosphere by 2017

13.12.2006
Impacts of climate change seen in both upper and lower atmospheres
Carbon dioxide emissions from the burning of fossil fuels will produce a 3 percent reduction in the density of Earth's outermost atmosphere by 2017, according to a team of scientists from the National Center for Atmospheric Research (NCAR) and Pennsylvania State University (PSU).

The research appears in the latest issue of the journal Geophysical Research Letters, and will be presented today at the American Geophysical Union conference in San Francisco, Calif.

"We're seeing climate change manifest itself in the upper as well as lower atmosphere," said NCAR scientist Stan Solomon, a co-author of the study. "This shows the far-ranging impacts of greenhouse gas emissions."

Lower density inthe thermosphere, which is the highest layer of the atmosphere, would reduce the drag on satellites in low Earth orbit, allowing them to stay airborne longer. Forecasts of upper-level air density could help NASA and other agencies plan the fuel needs and timing of satellite launches more precisely, potentially saving millions of dollars.

Confirming a prediction

Recent observations by scientists tracking satellite orbits have shown that the thermosphere, which begins about 60 miles above Earth and extends up to 400 miles, is beginning to become less dense, said Robert Kerr, program director in the National Science Foundation's (NSF) Division of Atmospheric Sciences.

This confirms a prediction made in 1989 by Roble and Bob Dickinson at NCAR that the thermosphere will cool and contract because of increasing carbon dioxide levels. The new study is the first to analyze whether the observed change will become more pronounced over the next decade.

At heights of more than 60 miles, one of the main elements of the atmosphere is atomic oxygen, a single atom of oxygen. As carbon dioxide increases near Earth's surface, it gradually diffuses upward and absorbs heat through collisions with atomic oxygen. It then radiates the heat away to space through infrared radiation, and the result is a net cooling of the upper atmosphere. As the molecules cool and settle, the thermosphere loses density.

Also affecting the thermosphere is the 11-year cycle of solar activity. During the active phase of the cycle, ultraviolet light and energetic particles from the sun increase, producing a warming and expansion of the upper atmosphere. When solar activity wanes, the thermosphere settles and cools.

In order to analyze recent solar cycles and peer into the future, the NCAR-PSU team used a computer model of the upper atmosphere that incorporates the solar cycle as well as the gradual increase of carbon dioxide due to human activities. The team also used a prediction for the next solar cycle, issued by NCAR scientist Mausumi Dikpati and colleagues, that calls for a stronger-than-usual solar cycle over the next decade. The model showed a decrease in thermospheric density from 1970 to 2000 of 1.7 percent per decade, or about 5 percent overall, which agrees with observations. The team found that the decrease was about three to four times more rapid during solar minimum than solar maximum.

Impacts on satellites

Many satellites, including the International Space Station and the Hubble Space Telescope, follow a low Earth orbit at altitudes close to 300 miles. Over time, the upper atmosphere drags the satellites closer to Earth. The amount of drag depends on the density of the thermosphere, which is why satellite planners need better predictions of how the thermosphere changes.

"Satellite operators noticed the solar cycle changes in density at the very beginning of the space age," says Solomon. "We are now able to reproduce the changes using the NCAR models and extend them into the next solar cycle."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>