Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lucky break gives scientists unique view of underwater eruption

28.11.2006
A combination of luck and being in the right place at the right time allowed a University of Florida geologist and other scientists to capture and record an undersea volcanic eruption for the first time ever.

The eruption, which took place early this spring thousands of feet below the surface of the Pacific Ocean, is described in a paper set for release Thursday in Science Express, the journal Science’s online magazine.

“Never before have we had instruments in place like this that recorded an eruptive event on the seafloor,” said Mike Perfit, a UF professor of geology.

Perfit was among the scientists who visited the eruption shortly after it took place aboard the deep-sea submersible Alvin. The project was headed by Maya Tolstoy, a seismologist with Columbia University’s Lamont Doherty Earth Observatory and the lead author of the Science paper.

Perfit said the eruption occurred about 400 miles west of Mexico along a massive volcanic mountain range called the East Pacific Rise. Fortuitously, it was one of three active undersea volcanic areas that were selected for high-intensity research in the late 1990s as part of the National Science Foundation’s RIDGE research program. As a result, geologists, biologists, geophysicists and other specialists had gathered a storehouse of samples, data and photos from the site.

The scientists also had numerous instruments in place on the ocean bottom 8,000 feet below the surface – including a dozen “ocean bottom seismometers.” These devices listen for and measure seismic activity which is recorded on a small computer hooked to a buoyant sphere. Seismologists on the research vessel retrieve the instrument by electronically signaling the seismometer to release from the seafloor, which then carries the hard drive full of data to the ocean surface.

When a group of scientists visited the East Pacific Rise site in April on a routine mission to retrieve the seismometers, they were surprised to discover that only four detached and rose to the surface, Perfit said. Three others responded to scientists’ signals but refused to bob to the surface. “They were responding, but they weren’t coming up. Usually you might lose one, but you don’t lose that many of your ocean bottom seismometers,” Perfit said.

Intrigued, the scientists used onboard equipment to measure temperature, salinity and turbidity near the ocean bottom. They discovered the water was unusually cloudy and warm above the ridge crest, indicating a possible eruption. To confirm it, the scientists retrieved some ocean floor lava from the ocean floor. Subsequent tests by Perfit and K. Rubin, a colleague at the University of Hawaii, confirmed that the rock was formed very recently as the result of a deep sea volcanic eruption.

Scientists in the RIDGE Program quickly mobilized and sent another ship to the site equipped with a deep-diving camera system. Towed behind the ship, the cameras revealed “brand new black glassy lava,” Perfit said. Unlike the explosive lava-spewing volcanoes on Earth’s surface, deep sea volcanoes emit lava slowly because of the enormous ocean pressure. This lava forms pillow-like structures across the ocean bottom as it seeps out of seafloor fissures.

The cameras also failed to record any visible ocean bottom life with the exception of thick white masses of bacterial colonies that coated the lava. That was in sharp contrast to thriving life recorded at the site in the years before. “There was at least one site that was a lush site with tubeworms, crabs and mussels and it was just gone, just buried,” Perfit said.

Perfit was among the scientists aboard the submersible Alvin who did repeated dives along the site in June and July. Among other things, the group located the ocean bottom seismometers and quickly discovered the problem – they had become enveloped and trapped in the lava flow.

The eruption allows scientists an unprecedented view of the “death and birth of a mid-ocean ridge from all perspectives – geological, biological, geophysical,” Perfit said.

That in turn will lead to much greater understanding of the unique underwater phenomena. For example, next April scientists, including Perfit, hope to retrieve some of the seismometers because they are likely to contain new information about the seismic activity leading up to and during the eruption -- and possibly predict these events. “We’ll be lucky if we catch another event like this in my lifetime,” Perfit said. “It really revitalizes the field.”

Mike Perfit | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>