Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress relief caused Giant’s Causeway

28.01.2002


Ireland’s huge hexagonal columns are a natural consequence of lava cooling.


The Giant’s Causeway.
© Allan Davies / LGPL



The Giant’s Causeway is not the work of men or monsters, but a natural consequence of how lava cools and solidifies, new computer simulations suggest.

The causeway is a field of roughly hexagonal basalt columns up to 40 feet high on the shores of County Antrim in Northern Ireland. It arose when a flow of volcanic rock split into hexagonal columns to relieve stress, according to Eduardo Jagla of the Centro Atómico Bariloche in Argentina and Alberto Rojo of the University of Michigan in Ann Arbor1.


Viscous lava shrinks as it cools, so rock in a solidifying layer is pulled in all directions at once, the researchers explain. This sets up stresses like those that make paint crack or wrinkle. As this stress increases, cracks appear.

As the causeway’s 40,000 pillars formed, cracks in the solid layer above would have propagated down into the solidifying layer below, like a stack of paint layers drying one after another. These cracks would have been deflected along the way onto new courses that provided the greatest stress relief.

Cracks that form a hexagonal network reduce energy more effectively than randomly orientated cracks, say Jagla and Rojo.

If this idea is correct, the causeway’s hexagonal columns were created by a much more random vertical-cracking structure, which once stood over the columns but has since been eroded by wind, rain and sea. There is geological evidence that the causeway we see today is merely a part of an original solidified lava field.

They might be giants

When the Giant’s Causeway was first reported to the Royal Society in London in 1693, some wondered whether men had created the step-like stone columns with picks and chisels. Local legend attributes them to the Irish giant Finn McCool, said to have wanted to walk to Scotland without wetting his feet. The more prosaic lava-flow explanation was put forward in 1771.

The columns form a natural stairway from a cliff into the sea. All have between four and eight sides, but most are roughly hexagonal. This geometric regularity has perplexed scientists for centuries.

Jagla and Rojo support their idea with computer simulations of fracture patterns in a layer of particles joined by springs, which mimic the mutually attractive atoms in the rock. The researchers simulate shrinking and cracking in a series of particle layers, using the final cracking pattern in one layer as the starting point for the cracking of the layer below.

They find that the pattern evolves from one that has many randomly distributed cracks to one in which the fractures define large polygons, most of which are six-sided.

What’s more, the model correctly predicts the proportions of columns with different numbers of sides and the average cross-sectional areas of these columns.


References

  1. Jagla, E. A., Rojo, A. G. Sequential fragmentation: the origin of columnar quasihexagonal patterns. Physical Review E, 65, 026203, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020121/020121-15.html

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>