Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress relief caused Giant’s Causeway

28.01.2002


Ireland’s huge hexagonal columns are a natural consequence of lava cooling.


The Giant’s Causeway.
© Allan Davies / LGPL



The Giant’s Causeway is not the work of men or monsters, but a natural consequence of how lava cools and solidifies, new computer simulations suggest.

The causeway is a field of roughly hexagonal basalt columns up to 40 feet high on the shores of County Antrim in Northern Ireland. It arose when a flow of volcanic rock split into hexagonal columns to relieve stress, according to Eduardo Jagla of the Centro Atómico Bariloche in Argentina and Alberto Rojo of the University of Michigan in Ann Arbor1.


Viscous lava shrinks as it cools, so rock in a solidifying layer is pulled in all directions at once, the researchers explain. This sets up stresses like those that make paint crack or wrinkle. As this stress increases, cracks appear.

As the causeway’s 40,000 pillars formed, cracks in the solid layer above would have propagated down into the solidifying layer below, like a stack of paint layers drying one after another. These cracks would have been deflected along the way onto new courses that provided the greatest stress relief.

Cracks that form a hexagonal network reduce energy more effectively than randomly orientated cracks, say Jagla and Rojo.

If this idea is correct, the causeway’s hexagonal columns were created by a much more random vertical-cracking structure, which once stood over the columns but has since been eroded by wind, rain and sea. There is geological evidence that the causeway we see today is merely a part of an original solidified lava field.

They might be giants

When the Giant’s Causeway was first reported to the Royal Society in London in 1693, some wondered whether men had created the step-like stone columns with picks and chisels. Local legend attributes them to the Irish giant Finn McCool, said to have wanted to walk to Scotland without wetting his feet. The more prosaic lava-flow explanation was put forward in 1771.

The columns form a natural stairway from a cliff into the sea. All have between four and eight sides, but most are roughly hexagonal. This geometric regularity has perplexed scientists for centuries.

Jagla and Rojo support their idea with computer simulations of fracture patterns in a layer of particles joined by springs, which mimic the mutually attractive atoms in the rock. The researchers simulate shrinking and cracking in a series of particle layers, using the final cracking pattern in one layer as the starting point for the cracking of the layer below.

They find that the pattern evolves from one that has many randomly distributed cracks to one in which the fractures define large polygons, most of which are six-sided.

What’s more, the model correctly predicts the proportions of columns with different numbers of sides and the average cross-sectional areas of these columns.


References

  1. Jagla, E. A., Rojo, A. G. Sequential fragmentation: the origin of columnar quasihexagonal patterns. Physical Review E, 65, 026203, (2002).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020121/020121-15.html

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>