Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stress relief caused Giant’s Causeway


Ireland’s huge hexagonal columns are a natural consequence of lava cooling.

The Giant’s Causeway.
© Allan Davies / LGPL

The Giant’s Causeway is not the work of men or monsters, but a natural consequence of how lava cools and solidifies, new computer simulations suggest.

The causeway is a field of roughly hexagonal basalt columns up to 40 feet high on the shores of County Antrim in Northern Ireland. It arose when a flow of volcanic rock split into hexagonal columns to relieve stress, according to Eduardo Jagla of the Centro Atómico Bariloche in Argentina and Alberto Rojo of the University of Michigan in Ann Arbor1.

Viscous lava shrinks as it cools, so rock in a solidifying layer is pulled in all directions at once, the researchers explain. This sets up stresses like those that make paint crack or wrinkle. As this stress increases, cracks appear.

As the causeway’s 40,000 pillars formed, cracks in the solid layer above would have propagated down into the solidifying layer below, like a stack of paint layers drying one after another. These cracks would have been deflected along the way onto new courses that provided the greatest stress relief.

Cracks that form a hexagonal network reduce energy more effectively than randomly orientated cracks, say Jagla and Rojo.

If this idea is correct, the causeway’s hexagonal columns were created by a much more random vertical-cracking structure, which once stood over the columns but has since been eroded by wind, rain and sea. There is geological evidence that the causeway we see today is merely a part of an original solidified lava field.

They might be giants

When the Giant’s Causeway was first reported to the Royal Society in London in 1693, some wondered whether men had created the step-like stone columns with picks and chisels. Local legend attributes them to the Irish giant Finn McCool, said to have wanted to walk to Scotland without wetting his feet. The more prosaic lava-flow explanation was put forward in 1771.

The columns form a natural stairway from a cliff into the sea. All have between four and eight sides, but most are roughly hexagonal. This geometric regularity has perplexed scientists for centuries.

Jagla and Rojo support their idea with computer simulations of fracture patterns in a layer of particles joined by springs, which mimic the mutually attractive atoms in the rock. The researchers simulate shrinking and cracking in a series of particle layers, using the final cracking pattern in one layer as the starting point for the cracking of the layer below.

They find that the pattern evolves from one that has many randomly distributed cracks to one in which the fractures define large polygons, most of which are six-sided.

What’s more, the model correctly predicts the proportions of columns with different numbers of sides and the average cross-sectional areas of these columns.


  1. Jagla, E. A., Rojo, A. G. Sequential fragmentation: the origin of columnar quasihexagonal patterns. Physical Review E, 65, 026203, (2002).

PHILIP BALL | © Nature News Service
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>