Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radar opens new window into the ice for Antarctic scientists

18.10.2006
Scientists are getting their first glimpse into the inner secrets of an ice shelf, thanks to the innovative application of a new radar technique developed by British Antarctic Survey (BAS).

Getting a clearer view of how ice behaves is important because it will help scientists predict more accurately how the ice sheet will respond to future climate change. The results are published this week in the Journal of Glaciology.

Using phase-sensitive radar – an exceptionally accurate version of the systems used by ships and aircraft to detect objects in their path – Dr Adrian Jenkins and colleagues from BAS studied the internal structure of the enormous Filchner-Ronne Ice Shelf, as well as the rate at which the bottom of the ice shelf is melting.

Lead author Dr Jenkins of BAS says, "The radar provides an unprecedented insight into the flow of the ice shelf. Internal structures are formed as layers of snow are laid down each year. These layers produce radar reflections that give us a totally new view of the internal workings of an ice sheet. This will help us understand how the ice flows and improve our ability to predict how the ice sheet as a whole will evolve in the future, which is important because growth or shrinkage of the ice sheet has a direct impact on global sea level."

As well as shedding new light on the makeup of the ice shelf, Dr Jenkins and his colleagues used the phase-sensitive radar to measure the rate at which the underside of the ice shelf is melting. These are the first-ever direct measurements of ice shelf melting and are extraordinarily accurate. According to Dr Jenkins,

"The new technique allows us to measure centimetre-scale changes in the 2-km thickness of the ice. We found that an average of 1 m of ice is melted from the bottom of the ice shelf every year. At this rate, all the ice lost by melting can be replenished by flow of ice from upstream, so that this part of the ice shelf is showing no signs of change. Elsewhere in Antarctica ice shelves and ice streams are thinning and now we have a tool to measure the thinning rates to unparalleled accuracy."

Athena Dinar | EurekAlert!
Further information:
http://www.bas.ac.uk
http://www.antarctica.ac.uk

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>