Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise breaks ice

16.01.2002


The last ice-age was interrupted by numerous bouts of warmth.
© Photodisc


Noise may have flipped the stable cold state (bottom) of North Atlantic Ocean currents to the warm state (top).
© Physical Review Letters


Natural randomness punctuated past ice ages with warm spells.

Natural randomness in the world’s climate system may have caused the frequent, fast and fleeting returns to warm conditions during past ice ages, say two German scientists1.

Andrey Ganopolski and Stefan Rahmstorf at the Potsdam Institute for Climate Impact Research think that the flickering character of ice-age climate is a signature of stochastic resonance. This is the counter-intuitive phenomenon where noise amplifies the effect a weak signal has on its surroundings.



Global climate during the past 10,000 years - since the last ice age ended - has remained relatively stable. Conversely, the ice age itself was interrupted by numerous warm episodes of a few hundred years each.

Some of these, called Heinrich events, are thought to have resulted from surges of the great ice sheet that covered much of North America. Others, called Dansgaard-Oeschger (D/O) events, were, till now, a mystery.

During D/O events, temperatures in the North Atlantic region typically rose by 5 to 10 ºC in just a few decades before sinking again over the ensuing centuries. Last year, Richard Alley of Pennsylvania State University and co-workers showed that the time between successive D/O events is often about 1,500, 3,000 or 4,500 years2.

The researchers suggested that the events were caused by some kind of periodic influence on climate that repeated every 1,500 years. They also proposed that the mechanism of D/O events might involve stochastic resonance.

Normally a signal, such as a radio transmission, is hindered by random variations - radio static, say, or noise. But in some circumstances a little noise can actually enhance the signal. This usually happens in a system that flips to a new state when a signal exceeds a certain threshold. Such systems are said to exhibit stochastic resonance.

Stochastic resonance was first invoked in 1982 in an attempt to explain why ice ages often recur every 100,000 years. Although that idea was later found wanting, stochastic resonance was subsequently discovered in a host of other situations. Living organisms use it to detect weak signals in a noisy environment.

Ganopolski and Rahmstorf have now discovered a way in which stochastic resonance may have generated D/O events every 1,500 years, or multiples thereof. They have developed a sophisticated computer model of the global climate system that takes into account the movements of the atmosphere and oceans. The model suggests that during ice ages there are two ways for water to circulate in the North Atlantic Ocean.

In the usual ’cold’ state, ocean currents carry relatively warm Atlantic water north until it sinks south of Greenland and returns towards the Equator in a bottom current. This state is prone to switching to another, temporary, state. Here, warm ocean surface waters travel even further north, into the Nordic Sea, before sinking. This brings warmer temperatures to the high-latitude North Atlantic region.

By forcing their model with a periodic signal that alters the ocean salt content every 1,500 years, the researchers mimic the typical pattern of ice-age D/O events - but only if there is also some random noise in the system.

There is evidence of a 1,500-year periodic forcing in many climate records. It is widely suspected to originate from repetitive changes in the activity of the Sun. By itself, this influence would not have induced the profound shifts in ice-age climate; but stochastic resonance could have enabled the weak signal to imprint itself on the ocean circulation.

References
  1. Ganopolski, A. & Rahmstorf, S. Abrupt glacial climate changes due to Infectious noiseInfectious noise. Physical Review Letters, 88, 038501, (2002).
  2. Alley, R. B., Anandakrishnan, S. & Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography, 16, 190 - 198, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-4.html

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>