Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Noise breaks ice


The last ice-age was interrupted by numerous bouts of warmth.
© Photodisc

Noise may have flipped the stable cold state (bottom) of North Atlantic Ocean currents to the warm state (top).
© Physical Review Letters

Natural randomness punctuated past ice ages with warm spells.

Natural randomness in the world’s climate system may have caused the frequent, fast and fleeting returns to warm conditions during past ice ages, say two German scientists1.

Andrey Ganopolski and Stefan Rahmstorf at the Potsdam Institute for Climate Impact Research think that the flickering character of ice-age climate is a signature of stochastic resonance. This is the counter-intuitive phenomenon where noise amplifies the effect a weak signal has on its surroundings.

Global climate during the past 10,000 years - since the last ice age ended - has remained relatively stable. Conversely, the ice age itself was interrupted by numerous warm episodes of a few hundred years each.

Some of these, called Heinrich events, are thought to have resulted from surges of the great ice sheet that covered much of North America. Others, called Dansgaard-Oeschger (D/O) events, were, till now, a mystery.

During D/O events, temperatures in the North Atlantic region typically rose by 5 to 10 ºC in just a few decades before sinking again over the ensuing centuries. Last year, Richard Alley of Pennsylvania State University and co-workers showed that the time between successive D/O events is often about 1,500, 3,000 or 4,500 years2.

The researchers suggested that the events were caused by some kind of periodic influence on climate that repeated every 1,500 years. They also proposed that the mechanism of D/O events might involve stochastic resonance.

Normally a signal, such as a radio transmission, is hindered by random variations - radio static, say, or noise. But in some circumstances a little noise can actually enhance the signal. This usually happens in a system that flips to a new state when a signal exceeds a certain threshold. Such systems are said to exhibit stochastic resonance.

Stochastic resonance was first invoked in 1982 in an attempt to explain why ice ages often recur every 100,000 years. Although that idea was later found wanting, stochastic resonance was subsequently discovered in a host of other situations. Living organisms use it to detect weak signals in a noisy environment.

Ganopolski and Rahmstorf have now discovered a way in which stochastic resonance may have generated D/O events every 1,500 years, or multiples thereof. They have developed a sophisticated computer model of the global climate system that takes into account the movements of the atmosphere and oceans. The model suggests that during ice ages there are two ways for water to circulate in the North Atlantic Ocean.

In the usual ’cold’ state, ocean currents carry relatively warm Atlantic water north until it sinks south of Greenland and returns towards the Equator in a bottom current. This state is prone to switching to another, temporary, state. Here, warm ocean surface waters travel even further north, into the Nordic Sea, before sinking. This brings warmer temperatures to the high-latitude North Atlantic region.

By forcing their model with a periodic signal that alters the ocean salt content every 1,500 years, the researchers mimic the typical pattern of ice-age D/O events - but only if there is also some random noise in the system.

There is evidence of a 1,500-year periodic forcing in many climate records. It is widely suspected to originate from repetitive changes in the activity of the Sun. By itself, this influence would not have induced the profound shifts in ice-age climate; but stochastic resonance could have enabled the weak signal to imprint itself on the ocean circulation.

  1. Ganopolski, A. & Rahmstorf, S. Abrupt glacial climate changes due to Infectious noiseInfectious noise. Physical Review Letters, 88, 038501, (2002).
  2. Alley, R. B., Anandakrishnan, S. & Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography, 16, 190 - 198, (2001).

PHILIP BALL | © Nature News Service
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>