Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise breaks ice

16.01.2002


The last ice-age was interrupted by numerous bouts of warmth.
© Photodisc


Noise may have flipped the stable cold state (bottom) of North Atlantic Ocean currents to the warm state (top).
© Physical Review Letters


Natural randomness punctuated past ice ages with warm spells.

Natural randomness in the world’s climate system may have caused the frequent, fast and fleeting returns to warm conditions during past ice ages, say two German scientists1.

Andrey Ganopolski and Stefan Rahmstorf at the Potsdam Institute for Climate Impact Research think that the flickering character of ice-age climate is a signature of stochastic resonance. This is the counter-intuitive phenomenon where noise amplifies the effect a weak signal has on its surroundings.



Global climate during the past 10,000 years - since the last ice age ended - has remained relatively stable. Conversely, the ice age itself was interrupted by numerous warm episodes of a few hundred years each.

Some of these, called Heinrich events, are thought to have resulted from surges of the great ice sheet that covered much of North America. Others, called Dansgaard-Oeschger (D/O) events, were, till now, a mystery.

During D/O events, temperatures in the North Atlantic region typically rose by 5 to 10 ºC in just a few decades before sinking again over the ensuing centuries. Last year, Richard Alley of Pennsylvania State University and co-workers showed that the time between successive D/O events is often about 1,500, 3,000 or 4,500 years2.

The researchers suggested that the events were caused by some kind of periodic influence on climate that repeated every 1,500 years. They also proposed that the mechanism of D/O events might involve stochastic resonance.

Normally a signal, such as a radio transmission, is hindered by random variations - radio static, say, or noise. But in some circumstances a little noise can actually enhance the signal. This usually happens in a system that flips to a new state when a signal exceeds a certain threshold. Such systems are said to exhibit stochastic resonance.

Stochastic resonance was first invoked in 1982 in an attempt to explain why ice ages often recur every 100,000 years. Although that idea was later found wanting, stochastic resonance was subsequently discovered in a host of other situations. Living organisms use it to detect weak signals in a noisy environment.

Ganopolski and Rahmstorf have now discovered a way in which stochastic resonance may have generated D/O events every 1,500 years, or multiples thereof. They have developed a sophisticated computer model of the global climate system that takes into account the movements of the atmosphere and oceans. The model suggests that during ice ages there are two ways for water to circulate in the North Atlantic Ocean.

In the usual ’cold’ state, ocean currents carry relatively warm Atlantic water north until it sinks south of Greenland and returns towards the Equator in a bottom current. This state is prone to switching to another, temporary, state. Here, warm ocean surface waters travel even further north, into the Nordic Sea, before sinking. This brings warmer temperatures to the high-latitude North Atlantic region.

By forcing their model with a periodic signal that alters the ocean salt content every 1,500 years, the researchers mimic the typical pattern of ice-age D/O events - but only if there is also some random noise in the system.

There is evidence of a 1,500-year periodic forcing in many climate records. It is widely suspected to originate from repetitive changes in the activity of the Sun. By itself, this influence would not have induced the profound shifts in ice-age climate; but stochastic resonance could have enabled the weak signal to imprint itself on the ocean circulation.

References
  1. Ganopolski, A. & Rahmstorf, S. Abrupt glacial climate changes due to Infectious noiseInfectious noise. Physical Review Letters, 88, 038501, (2002).
  2. Alley, R. B., Anandakrishnan, S. & Jung, P. Stochastic resonance in the North Atlantic. Paleoceanography, 16, 190 - 198, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-4.html

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>