Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland's ice loss accelerating rapidly, gravity-measuring satellites reveal

15.08.2006
A new analysis of data from twin satellites has revealed that the melting of Greenland's ice sheet has increased dramatically in the past few years, with much of the loss occurring primarily along one shoreline potentially affecting weather in Western Europe.

The loss of ice has been occurring about five times faster from Greenland's southeastern region in the past two years than in the previous year and a half. The dramatic changes were documented during a University of Texas at Austin study of Greenland's mass between 2002 and 2005.

The study was published today in the journal Science. Related results on the significant loss of ice from Antarctica were published in Science in March by other researchers participating in the Gravity Recovery and Climate Experiment (GRACE) mission. The GRACE mission is funded by NASA and the German Aerospace Center, and led by Aerospace Engineering Professor Byron Tapley at the university.

"Our latest GRACE findings are the most complete measurement of ice mass loss for Greenland," said Tapley, director of the university's Center for Space Research (CSR) and holder of the Clare Cockrell Williams Centennial Chair in Engineering. "The sobering thing to see is that the whole process of glacial melting is stepping up much more rapidly than before."

Antarctica is considered the largest, and Greenland the second largest, reservoir of fresh water on Earth, with the latter containing about 10 percent of the world's fresh water. Melting of ice from these two regions is expected to impact sea level and ocean circulation, and potentially the future of climates worldwide.

The Greenland study, for example, suggests that the amount of fresh water contributed from the melting of its ice sheet could add 0.56 millimeters annually to a global increase in sea levels, higher than all previously published measurements.

"These findings are consistent with the most recent independent measurements of Greenland's mass done by other techniques like satellite radar interferometry, but in this case they provide a direct measure of ice-mass changes," said Geology Professor Clark Wilson, a co-author on the latest Science article who helped analyze the estimates for Greenland. Wilson chairs the Department of Geological Sciences at the university and holds the Wallace E. Pratt Professorship in Geophysics.

Within the subpolar zone that includes Greenland, the rapid rise in meltwater along its eastern coast could add to other warming-related factors believed to be weakening the counterclockwise flow of the North Atlantic Current. For instance, the increased meltwater could change how more buoyant fresh water mixes with salt water in a branch of this flow called the Norwegian Current. This change could lower the temperatures of water, and thus wind, that travels past the west coast of Ireland and Great Britain.

That ocean temperature change would occur because the current might not move northward past Norway before returning to more southerly latitudes. Warmer, southerly waters would be stalled from moving northward if that happened, resulting in chillier winters in parts of Western Europe.

"If enough fresh water enters the Norwegian Current," Tapley said, "and you interrupt return flow, then there could be climate effects in Europe."

The twin GRACE satellites provide the most comprehensive monthly estimates of Greenland's ice-mass balance The satellites are sensitive to the gravitational pull of mass changes on Earth, which produce micrometer-scale variations in the distance (137 miles or 220 kilometers) that separates the two satellites as they fly in formation over Earth.

Lead author Jianli Chen, a CSR research scientist, developed a method to improve the effective spatial resolution of mass change estimates. The method used the known locations of major glaciers as information in estimating the sources of mass change.

"By using this special filtering procedure," Chen said, "we teased out additional details of mass changes in Greenland along its Southeastern and Northeastern shores separately."

The estimates showed that 69 percent of the ice-mass loss in recent years came from eastern Greenland. Of the 57 cubic miles (239 cubic kilometers) of water mass lost on average each year, 39 cubic miles (164 cubic kilometers) were from the eastern shoreline. More than half of that eastern loss involved ice from the glacier complex in southeast Greenland.

"This melting process may be approaching a point where it won't be centuries before Greenland's ice melts, but a much shorter time-frame," Tapley said, noting that it isn't possible to tell how much sooner this will be.

Tapley in the College of Engineering, and Wilson, whose department is part of the Jackson School of Geosciences, lead grants funded primarily by NASA to pursue research questions related to large-scale mass changes impacting Earth's features.

Becky Rische | EurekAlert!
Further information:
http://www.utexas.edu
http://www.engr.utexas.edu/news/action_shots/pages/GRACE_Tapley.cfm

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>