Arctic Coring Expedition Continues to Yield New Clues About Climate Change

Researchers have long recognized that a massive release of greenhouse gases, probably carbon dioxide or methane, occurred during the PETM. Surface temperatures also rose in many places by as much as 15 degrees Fahrenheit in the (relative) geological instant of about 100,000 years.

Arctic sediment samples were largely unavailable until 2004, when ACEX scientists recovered the first deep-ocean sediment samples from beneath the ice-laden waters near the North Pole. ACEX, only the second scientific expedition to be conducted by the Integrated Ocean Drilling Program (established in late 2003), recovered 339 meters of subseafloor sediment samples.

“Building a picture of ancient climatic events is a lot like putting together a jigsaw puzzle, and what ACEX allowed us to do was fill in a blank section of the PETM picture,” said Gerald Dickens, a Rice University geochemist and co-author, who conducted the initial, shipboard chemical analyses of all the ACEX core samples.

“The ACEX cores clearly show that the Arctic got very warm and wet during the PETM,” Dickens said. “Even tropical marine plants thrived in the balmy conditions.”

In today's oceans, certain species of microscopic plants are known to rapidly multiply and create algal blooms. Dickens said that fossils of these plants – known only to originate in the tropics before the PETM – are commonly seen in the ACEX cores. Furthermore, the chemistry of the organic carbon in the ACEX cores may rule out some earlier theories about what caused the PETM. The diminution of these alternate explanations strongly suggests that an enormous amount of carbon entered the atmosphere at the beginning of the PETM, either from volcanic eruptions or the melting of oceanic gas hydrates – mixtures of methane and ice on the seafloor.

ACEX co-authors include Mark Pagani and Nikolai Pedentchouk of Yale University, Matthew Huber of Purdue University, Appy Sluijs and Henk Brinkhuis of Utrecht University (Netherlands), and Stefan Schouten and Jaap Sinninghe Damsté of the Royal Netherlands Institute for Sea Research.

The ACEX expedition was an operation of the Integrated Ocean Drilling Program (IODP), an international marine research program primarily funded by the National Science Foundation, and Japan’s Ministry of Education, Culture, Sports, Science and Technology. The Arctic Coring Expedition was led by the European Consortium on Ocean Research Drilling (ECORD), an IODP contributing member that represents 17 nations. ECORD is responsible for managing all IODP mission-specific operations, i.e. scientific expeditions conducted in unusual or demanding environments in which specific platform requirements must be used to meet specific science objectives. In all, 21 countries participate in IODP.

Media Contact

Nancy Light EurekAlert!

More Information:

http://www.iodp.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors