Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Coring Expedition Continues to Yield New Clues About Climate Change

11.08.2006
For the second time in as many months, the IODP Arctic Coring Expedition (ACEX) is making news with new analysis of ocean-floor sediments. In the Aug. 10 issue of Nature, an article authored by several of the expedition scientists summarizes their findings: more evidence that the Arctic was extremely warm, unusually wet, and ice-free up to the time the last massive amounts of greenhouse gases were released into the Earth's atmosphere – a period calculated to have occurred 55 million years ago, and known as the Paleocene/Eocene thermal maximum, or PETM.

Researchers have long recognized that a massive release of greenhouse gases, probably carbon dioxide or methane, occurred during the PETM. Surface temperatures also rose in many places by as much as 15 degrees Fahrenheit in the (relative) geological instant of about 100,000 years.

Arctic sediment samples were largely unavailable until 2004, when ACEX scientists recovered the first deep-ocean sediment samples from beneath the ice-laden waters near the North Pole. ACEX, only the second scientific expedition to be conducted by the Integrated Ocean Drilling Program (established in late 2003), recovered 339 meters of subseafloor sediment samples.

"Building a picture of ancient climatic events is a lot like putting together a jigsaw puzzle, and what ACEX allowed us to do was fill in a blank section of the PETM picture," said Gerald Dickens, a Rice University geochemist and co-author, who conducted the initial, shipboard chemical analyses of all the ACEX core samples.

"The ACEX cores clearly show that the Arctic got very warm and wet during the PETM," Dickens said. "Even tropical marine plants thrived in the balmy conditions."

In today's oceans, certain species of microscopic plants are known to rapidly multiply and create algal blooms. Dickens said that fossils of these plants – known only to originate in the tropics before the PETM – are commonly seen in the ACEX cores. Furthermore, the chemistry of the organic carbon in the ACEX cores may rule out some earlier theories about what caused the PETM. The diminution of these alternate explanations strongly suggests that an enormous amount of carbon entered the atmosphere at the beginning of the PETM, either from volcanic eruptions or the melting of oceanic gas hydrates – mixtures of methane and ice on the seafloor.

ACEX co-authors include Mark Pagani and Nikolai Pedentchouk of Yale University, Matthew Huber of Purdue University, Appy Sluijs and Henk Brinkhuis of Utrecht University (Netherlands), and Stefan Schouten and Jaap Sinninghe Damsté of the Royal Netherlands Institute for Sea Research.

The ACEX expedition was an operation of the Integrated Ocean Drilling Program (IODP), an international marine research program primarily funded by the National Science Foundation, and Japan’s Ministry of Education, Culture, Sports, Science and Technology. The Arctic Coring Expedition was led by the European Consortium on Ocean Research Drilling (ECORD), an IODP contributing member that represents 17 nations. ECORD is responsible for managing all IODP mission-specific operations, i.e. scientific expeditions conducted in unusual or demanding environments in which specific platform requirements must be used to meet specific science objectives. In all, 21 countries participate in IODP.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>