Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic dust in ice cores sheds light on Earth's past climate

31.07.2006
The Earth Institute at Columbia University--Each year nearly 40,000 tons of cosmic dust fall to Earth from outer space. Now, the first successful chronological study of extraterrestrial dust in Antarctic ice has shown that this amount has remained largely constant over the past 30,000 years, a finding that could help refine efforts to understand the timing and effects of changes in the Earth's past climate. The same study also used an improved analytical technique to show that dust carried to Antarctica from continental sources changed depending on climate.

The study, which appears in the July 28 issue of the journal Science, involved researchers from the Lamont-Doherty Earth Observatory, a part of The Earth Institute at Columbia University, and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, Germany. The depth of the core they examined corresponded to the period between 6,800 and 29,000 years before the present day--a span that includes the height of the last glacial period, and the transition to warm conditions similar to today.

The scientists collected particulate matter from the EPICA (European Project for Ice Coring in Antarctica) ice core and measured the concentration of helium-3 (3He), a rare isotope that is plentiful in the sun's solar wind and is carried to Earth imbedded in cosmic dust particles measuring just a few thousandths of a millimeter in diameter. These dust particles carry their exotic helium load to the Earth's surface where they are preserved in the snow and ice of the polar ice caps, among other places.

Because ice cores from the polar caps provide a high-resolution temporal record of the past, the researchers were able to measure fine variations in the rate of cosmic dust accumulation between glacial and interglacial periods as well as the helium isotope characteristics of these rare particles. They found that the accumulation of cosmic dust did not change appreciably as the Earth emerged from the last great Ice Age and entered the current warm period, a fact that is likely to bolster the use of cosmic dust measuring techniques in future climate studies.

In addition, this was the first study to examine both cosmic and terrestrial dust using the same helium-isotope technique. As a result, they also found that the composition of mineral dust particles carried by wind from the southern continents to Antarctica changed considerably as the Earth's climate changed.

"The terrestrial dust coming down on Antarctica during the Ice Age obviously is not the same as that during warm periods," said Gisela Winckler, a Doherty associate research scientist at Lamont-Doherty and lead author on the study. "This may be due to the mineral dust originating from different regional sources or to changes in the process responsible for producing the dust."

Ken Kostel | EurekAlert!
Further information:
http://www.earth.columbia.edu
http://www.ldeo.columbia.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>