Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate History Rewritten: Arctic Ice an Early Arrival

01.06.2006


Arctic ice formed about 45 million years ago – roughly 14 million years ahead of previous predictions – according to new research published in Nature. An international team of scientists, including Brown geologist Steven Clemens, says this startling evidence shows that glaciers formed in tandem at Earth’s poles, providing important insights into global climate change.


Cold, hard facts
An armada of three ice-breakers kept abundant ice at bay so that ocean-drilling scientists could collect sediment core samples from beneath the Arctic sea floor. Evidence from the core samples suggested that glaciers had formed in the Arctic 14 million years earlier than scientists had thought. Image: IODP/ECORD Science Operator



For the first time, scientists have pulled up prehistoric geologic records from the frigid vault of the Arctic Ocean. One of the findings, evidence of glacial Arctic ice from 45 million years ago, recasts a critical chapter of global climate history.

The evidence – pea-sized pebbles locked inside a 430 meter-long sediment core – shows that glaciers formed in the Arctic Ocean about 14 million years earlier than geologists had thought. This means that the immense sheets of ice at the Earth’s poles formed simultaneously, something researchers call “bipolar symmetry” in one of three reports on Arctic ice highlighted on the cover of Nature.


Previously, geologists believed glaciers formed in Antarctica long before they appeared in the Arctic. The new evidence clears up this climate mystery and underscores the role that carbon dioxide and other greenhouse gases play in climate change, according to Steven Clemens, associate professor (research) in the Department of Geological Sciences at Brown University and a co-author of the Nature papers.

“In the past, scientists thought shifting tectonic plates and changes in ocean circulation patterns in the Southern Hemisphere may have prompted ice to form earlier in Antarctica,” Clemens said. “But there was other data that contradicted this theory. Now much of what we know about the evolution of ice on Earth makes more sense. And the evidence underscores the importance of greenhouse gases as a driver of climate change. If you inject or remove large amounts of carbon in the atmosphere, you get truly global climate change.”

Earth shifted from a “greenhouse” climate to an “icehouse” climate roughly 45 million years ago, a dramatic cooling that changed wind patterns, ocean currents and land and ocean temperatures and had a profound impact on plant and animal life. How this change played out in the Arctic, however, has never been decisively documented. That history, written in sediment on the seafloor, sits locked under thick, dense ice.

The Arctic Coring Expedition (ACEX), supported by the Integrated Ocean Drilling Program, an international marine research program, successfully penetrated sea ice up to 16 feet thick. This feat took two ice-breakers and a drill ship that hauled up sediment gathered 430 meters below the seafloor along the Lomonsov Ridge, an undersea sliver of the Eurasian continent that broke away and sunk as the Arctic Ocean opened to the Atlantic and Pacific oceans.

Clemens was a member of ACEX, led by Kathryn Moran at the University of Rhode Island and Jan Backman at Stockholm University. A paleoceanographer, Clemens was brought in to help analyze the sediment cores, which contained a stunning 54 million years of climate history. Working in a German laboratory, Clemens and other members of the science team studied the samples to determine their physical, mineralogical and biological makeup.

The team found:

  • Sediment from the most recent era, stretching from the present to about 25 million years ago, was marked by clay with coarse sand. The sand, along with small pebbles, comes from continents – blown by wind or carried by icebergs that deposited these bits onto the seafloor. These samples contained plankton, clear signs of salt water.
  • Sediment dating from 25 to 44 million years ago was marked by condensed silt containing no discernible signs of biological life. This era is a mystery, a hole in the historical record.
  • Sediment dating back 44 to 49 million years ago contained remnants of both fresh- and salt-water algae in the clay, including a surprise – spores of Azolla, a fresh-water fern. Scientists believe that fresh water may have sat on the surface, with denser salt water sitting toward the bottom. The evidence suggests that the ocean was in transition, moving from the prehistoric “greenhouse” world to the “icehouse” world that exists today.
  • Sediment from the earliest era, dating from 49 to 54 million years ago, was silty clay containing Apectodinium, microfossils that are strong markers of an abrupt warming event. This evidence suggests that Arctic was as warm as the subtropics about 55 million years ago – much warmer than previously estimated.

Clemens said the major finding – evidence of ice-deposited debris 45 million years ago – came in the form of pebbles. Why? Glaciers scrape across the land as they grow, carrying ground rock with them. When glaciers reach the sea, some of that ice shears off and forms icebergs, which shed pebbles as they melt.

This evidence of synchronous ice formation in the Arctic and Antarctic in the past may help bolster the evidence of “bipolar symmetry” today. In recent months, scientists have reported rapid melting of the worlds’ ice, from the Antarctic ice sheet to Greenland glaciers. Many scientists believe the shrinking ice is linked to a sharp increase in greenhouse gases.

“Bipolar ice forms together and melts together,” Clemens said. “Carbon levels are a huge driver of ice volume and global climate change, at all time scales.”

The International Ocean Drilling Program supported the research. The program receives primary funding from the National Science Foundation and Japan’s Ministry of Science, Education, Culture, Sports, Science and Technology. The ACEX platform operations were funded by ECORD, the European Consortium for Ocean Research Drilling, a contributing member of IODP. As an affiliate member, the People’s Republic of China also supported the expedition.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>