Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas-temperature feedback mechanism may raise warming beyond previous estimates

23.05.2006


A team of European scientists reports that climate change estimates for the next century may have substantially underestimated the potential magnitude of global warming. They say that actual warming due to human fossil fuel emissions may be 15-to-78 percent higher than warming estimates that do not take into account the feedback mechanism involving carbon dioxide and Earth’s temperature.



In a paper to be published on 26 May in Geophysical Research Letters, Marten Scheffer of Wageningen University in the Netherlands and colleagues at the Potsdam Institute for Climate Impact Research in Germany and the Centre for Ecology and Hydrology in the United Kingdom use newly acquired ancient climate data to quantify the two-way phenomenon by which greenhouse gases not only contribute to higher temperatures, but are themselves increased by the higher temperatures. This higher concentration leads to still higher temperatures, in what scientists call a positive feedback loop.

The researchers achieved their breakthrough by interpreting the high-resolution data from polar ice cores and temperature reconstructions based on geological proxy data in a new way. Although the effect of greenhouse gases on temperature is well known, the reverse effect is usually ignored. The latter has now been estimated through a correction of the past climate data, using a model of the greenhouse effect.


One complicating factor was that some of the processes that play a role in the feedback loop are quite fast, taking place over a period of years, while others take centuries or even millennia. This implies that the strength of the feedback effect depends on the time scale being analyzed. Another factor was that the modern world looks quite different than it did tens of thousands of year ago, when the ice in the cores was formed.

Therefore, the authors focused especially on relatively recent climatic anomaly known as the "Little Ice Age." During this period (about 1550-1850), immortalized in many paintings of frozen landscapes in Northern Europe, Earth was substantially colder than it is now. This, scientists have concluded, was due largely to reduced solar activity, and just as during true ice ages, the atmospheric carbon level dropped during the Little Ice Age. The authors used this information to estimate how sensitive the carbon dioxide concentration is to temperature, which allowed them to calculate how much the climate-carbon dioxide feedbacks will affect future global warming.

As Marten Scheffer explains, "Although there are still significant uncertainties, our simple data-based approach is consistent with the latest climate-carbon cycle models, which suggest that global warming will be accelerated by the effects of climate change on the rate of carbon dioxide increase. In view of our findings, estimates of future warming that ignore these effects may have to be raised by about 50 percent. We have, in fact, been conservative on several points. For instance, we do not account for the greenhouse effect of methane, which is also known to increase in warm periods."

Jac Niessen | alfa
Further information:
http://www.wur.nl/UK

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>