Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas-temperature feedback mechanism may raise warming beyond previous estimates

23.05.2006


A team of European scientists reports that climate change estimates for the next century may have substantially underestimated the potential magnitude of global warming. They say that actual warming due to human fossil fuel emissions may be 15-to-78 percent higher than warming estimates that do not take into account the feedback mechanism involving carbon dioxide and Earth’s temperature.



In a paper to be published on 26 May in Geophysical Research Letters, Marten Scheffer of Wageningen University in the Netherlands and colleagues at the Potsdam Institute for Climate Impact Research in Germany and the Centre for Ecology and Hydrology in the United Kingdom use newly acquired ancient climate data to quantify the two-way phenomenon by which greenhouse gases not only contribute to higher temperatures, but are themselves increased by the higher temperatures. This higher concentration leads to still higher temperatures, in what scientists call a positive feedback loop.

The researchers achieved their breakthrough by interpreting the high-resolution data from polar ice cores and temperature reconstructions based on geological proxy data in a new way. Although the effect of greenhouse gases on temperature is well known, the reverse effect is usually ignored. The latter has now been estimated through a correction of the past climate data, using a model of the greenhouse effect.


One complicating factor was that some of the processes that play a role in the feedback loop are quite fast, taking place over a period of years, while others take centuries or even millennia. This implies that the strength of the feedback effect depends on the time scale being analyzed. Another factor was that the modern world looks quite different than it did tens of thousands of year ago, when the ice in the cores was formed.

Therefore, the authors focused especially on relatively recent climatic anomaly known as the "Little Ice Age." During this period (about 1550-1850), immortalized in many paintings of frozen landscapes in Northern Europe, Earth was substantially colder than it is now. This, scientists have concluded, was due largely to reduced solar activity, and just as during true ice ages, the atmospheric carbon level dropped during the Little Ice Age. The authors used this information to estimate how sensitive the carbon dioxide concentration is to temperature, which allowed them to calculate how much the climate-carbon dioxide feedbacks will affect future global warming.

As Marten Scheffer explains, "Although there are still significant uncertainties, our simple data-based approach is consistent with the latest climate-carbon cycle models, which suggest that global warming will be accelerated by the effects of climate change on the rate of carbon dioxide increase. In view of our findings, estimates of future warming that ignore these effects may have to be raised by about 50 percent. We have, in fact, been conservative on several points. For instance, we do not account for the greenhouse effect of methane, which is also known to increase in warm periods."

Jac Niessen | alfa
Further information:
http://www.wur.nl/UK

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>