Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There’s Water Under the Desert – But It’s Hardly Being Used

24.03.2006


The one place in water-short Israel where natural groundwater is available and not being fully exploited is – of all places – in the mostly uninhabited Judean desert.


Illustration shows area covered by Judea Group Aquifer, with outlets into Dead Sea springs



This surprising conclusion arises from a thorough hydrological mapping study done as an M.Sc. thesis at the Hebrew University of Jerusalem by Leehee Laronne Ben-Itzhak, under the supervision of Prof. Haim Gvirtzman of the university’s Institute of Earth Sciences. The study provides detailed information regarding the nature, volume and path of what is called the Judea Group Aquifer, an underground water reservoir beneath the Judean desert. A report on the study was carried in a recent issue of the Journal of Hydrology

This aquifer begins in the Judean mountains and flows in a generally northeasterly direction towards the Dead Sea, with outflows at four springs adjacent to the Dead Sea – the Tsukim, Kane, Samar and Ein-Gedi springs. There is also some sub-surface flow into the Dead Sea.


The rain-fed aquifer contains an average yearly volume of some 100 million cubic meters of water, of which only about 20 percent is currently used, said Prof. Gvirtzman, with the rest flowing into the Dead Sea. The water potential of the Judea Group Aquifer is sufficient to supply 5 percent of the current total freshwater usage in Israel, said Gvirtzman, and could at least meet the potable water needs of the towns of Maale Adumim, Bethlehem and Hebron at much lower cost than at present.

Currently, he says the water coming to Maale Adumim is brought sometimes hundreds of kilometers from Lake Kinneret via the National Water Carrier. Why do that when there is water literally beneath the town? asks Gvirtzman.

In addition to the mapping survey carried out by Ben-Itzhak, who is now working on her Ph.D. theses at the Weizmann Institute of Science, another study is currently being done by a second graduate student, Eldad Levi, also working under Prof. Gvirtzman, who is analyzing the interface between the fresh and saline groundwaters at various points in the Judea Group Aquifer, using a novel remote sensing technique called the deep time-domain electro-magnetic method.

“These two studies have practical implications regarding future possibilities of groundwater development for the benefit of both Israelis and Palestinians residing in the area and for conservation of nature reserves located along the Dead Sea,” says Gvirtzman. “The government has allocated these waters to the Palestinians, who are unfortunately doing nothing to fully exploit this available water source,” he added.

As for the impact of drawing more water away from flowing into the Dead Sea, which is rapidly becoming depleted, Gvirtzman says that in any case the current groundwater flow into the Dead Sea is totally inadequate to halt that problem and that dramatic steps would have to be taken to resolve the situation.

The study of the Judea Group Aquifer was conducted with the support of grants from the Ring Research Fund at the Hebrew University and from the Israel Ministry of Environmental Quality.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>