Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storms lower ozone levels

29.10.2001


The North Atlantic Oscillation mixes the surrounding region’s air. © M. Visbeck


Ozone miniholes over the North Atlantic follow the unsteady pulse of climate fluctuations.

Recurring fluctuations in the North Atlantic climate are punching miniholes in the ozone layer, exposing Scandinavia and northern Europe to higher levels of ultraviolet radiation than normal, say two climatologists.

Seesawing air pressure over Greenland and the subtropical north Atlantic Ocean stirs the atmosphere and wafts ozone-depleted air towards populated high-latitude regions in the Northern Hemisphere, they suggest1.



In the winter of 1999 the ozone that usually blankets some areas of the North Atlantic was replaced by a threadbare sheet. The amount of ozone in the atmosphere over southern Scandinavia that December reached a record low.

These temporary but substantial episodes of ozone depletion are called ’miniholes’. They are associated with greater levels of harmful ultraviolet rays at ground level - atmospheric ozone usually filters out this radiation from sunlight.

Ozone depletion and holes normally surround the poles, where chemical reactions involving human-made CFC gases decimate ozone in the upper atmosphere. The North Atlantic’s ozone miniholes aren’t created this way. Natural processes make and destroy atmospheric ozone constantly. The thickness of the ozone layer worldwide depends on how ozone-rich and ozone-poor air gets mixed.

Yvan Orsolini of the Norwegian Institute for Air Research in Kjeller and Varavut Limpasuvan of the Costal Carolina University in Conway, South Carolina, say that a climate phenomenon called the North Atlantic Oscillation (NAO) dominates the mixing of air in the North Atlantic region.

The NAO is responsible for much of the region’s monthly and yearly variations in climate, much as the El Nino/Southern Oscillation influences the climates of many tropical and mid-latitude regions in the Southern Hemisphere.

The NAO tips between two phases. In its positive phase, there is a pronounced low-pressure region over Iceland, and high pressure over the subtropical Atlantic (around the Azores and the coast of Portugal). In the negative phase, the Icelandic low and the subtropical high are much weaker. These two phases switch every year or so, bringing changes in weather and temperatures over Europe and Scandinavia.

The NAO also controls how air circulates in the North Atlantic, which led Orsolini and Limpasuvan to suspect that it might influence the appearance of ozone miniholes. In the positive phase, a jet of air from North America swoops northeastwards across the North Atlantic and Scandinavia, bringing storms. In the negative phase a weaker jet carries moist air from America to the Mediterranean region.

Ozone variability and miniholes tend to appear along storm tracks over the North Atlantic. Orsolini and Limpasuvan compared 20 years of satellite ozone measurements with measurements of the phase and strength of the NAO.

They found that dips in ozone match up with times when storms cross the Atlantic into Scandinavia and northern Europe. The researchers reason that the transatlantic jet during this phase brings ozone-poor air from the lower atmosphere of the subtropical United States to the base of the upper atmosphere in northern Europe and Scandinavia, diluting the ozone layer here.

They point out that pronounced ’positive-phase’ NAO events have been more common since the 1980s and 1990s, and that these are probably responsible for the increasing incidence of ozone miniholes.

References
  1. Orsolini, Y. J. & Limpasuvan, V. The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophysical Research Letters, 20, 4099 - 4102, (2001).


PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-5.html
http://www.nature.com/nsu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>