Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storms lower ozone levels

29.10.2001


The North Atlantic Oscillation mixes the surrounding region’s air. © M. Visbeck


Ozone miniholes over the North Atlantic follow the unsteady pulse of climate fluctuations.

Recurring fluctuations in the North Atlantic climate are punching miniholes in the ozone layer, exposing Scandinavia and northern Europe to higher levels of ultraviolet radiation than normal, say two climatologists.

Seesawing air pressure over Greenland and the subtropical north Atlantic Ocean stirs the atmosphere and wafts ozone-depleted air towards populated high-latitude regions in the Northern Hemisphere, they suggest1.



In the winter of 1999 the ozone that usually blankets some areas of the North Atlantic was replaced by a threadbare sheet. The amount of ozone in the atmosphere over southern Scandinavia that December reached a record low.

These temporary but substantial episodes of ozone depletion are called ’miniholes’. They are associated with greater levels of harmful ultraviolet rays at ground level - atmospheric ozone usually filters out this radiation from sunlight.

Ozone depletion and holes normally surround the poles, where chemical reactions involving human-made CFC gases decimate ozone in the upper atmosphere. The North Atlantic’s ozone miniholes aren’t created this way. Natural processes make and destroy atmospheric ozone constantly. The thickness of the ozone layer worldwide depends on how ozone-rich and ozone-poor air gets mixed.

Yvan Orsolini of the Norwegian Institute for Air Research in Kjeller and Varavut Limpasuvan of the Costal Carolina University in Conway, South Carolina, say that a climate phenomenon called the North Atlantic Oscillation (NAO) dominates the mixing of air in the North Atlantic region.

The NAO is responsible for much of the region’s monthly and yearly variations in climate, much as the El Nino/Southern Oscillation influences the climates of many tropical and mid-latitude regions in the Southern Hemisphere.

The NAO tips between two phases. In its positive phase, there is a pronounced low-pressure region over Iceland, and high pressure over the subtropical Atlantic (around the Azores and the coast of Portugal). In the negative phase, the Icelandic low and the subtropical high are much weaker. These two phases switch every year or so, bringing changes in weather and temperatures over Europe and Scandinavia.

The NAO also controls how air circulates in the North Atlantic, which led Orsolini and Limpasuvan to suspect that it might influence the appearance of ozone miniholes. In the positive phase, a jet of air from North America swoops northeastwards across the North Atlantic and Scandinavia, bringing storms. In the negative phase a weaker jet carries moist air from America to the Mediterranean region.

Ozone variability and miniholes tend to appear along storm tracks over the North Atlantic. Orsolini and Limpasuvan compared 20 years of satellite ozone measurements with measurements of the phase and strength of the NAO.

They found that dips in ozone match up with times when storms cross the Atlantic into Scandinavia and northern Europe. The researchers reason that the transatlantic jet during this phase brings ozone-poor air from the lower atmosphere of the subtropical United States to the base of the upper atmosphere in northern Europe and Scandinavia, diluting the ozone layer here.

They point out that pronounced ’positive-phase’ NAO events have been more common since the 1980s and 1990s, and that these are probably responsible for the increasing incidence of ozone miniholes.

References
  1. Orsolini, Y. J. & Limpasuvan, V. The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophysical Research Letters, 20, 4099 - 4102, (2001).


PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-5.html
http://www.nature.com/nsu/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>