Puffer fish raw and rich

The puffer will help pinpoint human genes. <br>© Underwaterphotography.com <br>

Draft Fugu genome will help find human genes.

A draft sequence of the puffer-fish genome is complete. The fish’s compact genetics should accelerate the discovery of human genes and their key controlling sequences.

Gene-prediction programs struggle to find genes in the 3 billion letters of the human sequence, which includes swathes of junk DNA and defunct pseudogenes.

The bony fish Fugu rubripes shares our gene repertoire but has a genome one-eighth of the size. Its sequence “is easier to sift through for genes”, says Greg Elgar of the UK Human Genome Mapping Project Resource Centre in Hinxton, a partner in the international sequencing effort.

The rough sequence covers 99% of Fugu’s DNA. It should help to settle the much-disputed estimate of gene number in humans. Current figures for Fugu are around 35,000-40,000; most recent human approximations are 30,000-40,000.

Crucial sequences that control how actively genes make proteins are also very similar in puffer fish and humans, explains Elgar, despite the fact that their most recent common ancestor lived 45 million years ago.

“[These sequences] are the most exciting targets for therapeutics,” says Elgar. Members of the consortium are now undertaking large-scale genome analyses to pinpoint these regulatory regions.

The Fugu genome project used ’whole-genome shotgun’ sequencing, a technique pioneered by the commercial human-genome sequencers Celera, in which fragments are read and then pieced together.

The draft announcement comes only a year after the consortium, based in the United States, Singapore and the United Kingdom, embarked on the project. They plan to publish an analysis in early 2002 and are making all sequence information freely available.

Media Contact

HELEN PEARSON Nature News Service

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Microscopy beyond the resolution limit

The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy. In the pages…

Material found in house paint may spur technology revolution

Sandia developed new device to more efficiently process information. The development of a new method to make non-volatile computer memory may have unlocked a problem that has been holding back…

Immune protein orchestrates daily rhythm of squid-bacteria symbiotic relationship

Nearly every organism hosts a collection of symbiotic microbes–a microbiome. It is now recognized that microbiomes are major drivers of health in all animals, including humans, and that these symbiotic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close