Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unearthing explanations for New Madrid earthquakes

21.02.2006


On Dec. 16, 1811, residents of New Madrid, Mo., were wrested from sleep by violent shaking and a deafening roar. A short time later, church bells hundreds of miles away in Boston began to ring. It was the first of three massive earthquakes that rocked the central United States between December 1811 and February 1812, even changing the course of the Mississippi River in their aftermath.



"A big earthquake in the same region as the 1811-1812 earthquakes would have devastating consequences should they recur today because of the population centers in St. Louis and Memphis," Stanford University geophysicist Mark Zoback told an audience Feb. 20 at the annual meeting of the American Association for the Advancement of Science in St. Louis, Mo.

vWe simply need to know more about how these systems work in order to serve the public," added Zoback, the Benjamin M. Page Professor in Earth Sciences.


In a talk titled vTremors in the Heartland: The Puzzle of Mid-Continent Earthquakes," Zoback discussed what is presently known about the New Madrid seismic zone and his work creating geodynamic models of the region. Zoback began his career studying New Madrid. In 1976, shortly after receiving his doctoral degree, he participated in the first seismic work to identify the causative faults. In an article published in the February 2001 issue of Geology, Zoback and former graduate student Balz Grollimund presented a theory explaining why earthquakes occur in this area.

The New Madrid seismic zone, which is roughly at the juncture of Missouri, Kentucky, Arkansas and Tennessee near the Mississippi River, is unusual because most earthquakes occur at the edges of rigid tectonic plates that essentially float on the fluid-like interior of the Earth. The plates produce earthquakes when they move over, under or beside each other. In California, earthquakes occur along the San Andreas Fault because the Pacific plate moves horizontally past the North American plate, like two bumper cars brushing up against each other.

Understanding why earthquakes occur in the New Madrid zone, on the other hand, has proven more elusive. The zone is in the middle of the North American plate, thousands of miles from the edges where all the action usually occurs.

"What makes New Madrid unique are elements of the structure and properties of the Earth’s crust and mantle that it inherited over long periods of geologic time," Zoback said. "It’s sort of a legacy effect."

He explained that tens of thousands of years ago, the Laurentide ice sheet covered most of Canada and ran as far south as the middle of Illinois. According to Zoback, this massive glacier did not cover the New Madrid zone but was large enough to affect the Earth hundreds of miles to the south-in effect, the ice sheet was so heavy it pressed into the Earth’s surface. Think of squeezing a rubber ball with your finger.

As the climate warmed, melting the ice, the ground was freed of the heavy pressure of the ice sheet. It is the constant release of this pressure that causes earthquakes in New Madrid, he explained. Zoback’s model predicts that earthquakes could continue to occur in the region for the next few thousand years.

Because a major earthquake could strike the area, Zoback said the science community must help regional officials prepare for such an event.

"What the scientific community must do is continue the fundamental research trying to understand why these earthquakes occur," he said. "At the applied level, scientists need to work with state and local officials to make sure the importance of earthquake hazards are considered in the development of building codes and critical structures such as bridges, schools and hospitals."

Zoback also cautioned that local communities must understand that seismic events, such as those in 1811 and 1812, aren’t simply history but are warnings of the potential for future earthquakes.

"It’s one thing to know it was a part of your past," he said. "It’s another to be prepared for it to be part of your future."

John B. Stafford is a science-writing intern at Stanford News Service.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>