Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unearthing explanations for New Madrid earthquakes

21.02.2006


On Dec. 16, 1811, residents of New Madrid, Mo., were wrested from sleep by violent shaking and a deafening roar. A short time later, church bells hundreds of miles away in Boston began to ring. It was the first of three massive earthquakes that rocked the central United States between December 1811 and February 1812, even changing the course of the Mississippi River in their aftermath.



"A big earthquake in the same region as the 1811-1812 earthquakes would have devastating consequences should they recur today because of the population centers in St. Louis and Memphis," Stanford University geophysicist Mark Zoback told an audience Feb. 20 at the annual meeting of the American Association for the Advancement of Science in St. Louis, Mo.

vWe simply need to know more about how these systems work in order to serve the public," added Zoback, the Benjamin M. Page Professor in Earth Sciences.


In a talk titled vTremors in the Heartland: The Puzzle of Mid-Continent Earthquakes," Zoback discussed what is presently known about the New Madrid seismic zone and his work creating geodynamic models of the region. Zoback began his career studying New Madrid. In 1976, shortly after receiving his doctoral degree, he participated in the first seismic work to identify the causative faults. In an article published in the February 2001 issue of Geology, Zoback and former graduate student Balz Grollimund presented a theory explaining why earthquakes occur in this area.

The New Madrid seismic zone, which is roughly at the juncture of Missouri, Kentucky, Arkansas and Tennessee near the Mississippi River, is unusual because most earthquakes occur at the edges of rigid tectonic plates that essentially float on the fluid-like interior of the Earth. The plates produce earthquakes when they move over, under or beside each other. In California, earthquakes occur along the San Andreas Fault because the Pacific plate moves horizontally past the North American plate, like two bumper cars brushing up against each other.

Understanding why earthquakes occur in the New Madrid zone, on the other hand, has proven more elusive. The zone is in the middle of the North American plate, thousands of miles from the edges where all the action usually occurs.

"What makes New Madrid unique are elements of the structure and properties of the Earth’s crust and mantle that it inherited over long periods of geologic time," Zoback said. "It’s sort of a legacy effect."

He explained that tens of thousands of years ago, the Laurentide ice sheet covered most of Canada and ran as far south as the middle of Illinois. According to Zoback, this massive glacier did not cover the New Madrid zone but was large enough to affect the Earth hundreds of miles to the south-in effect, the ice sheet was so heavy it pressed into the Earth’s surface. Think of squeezing a rubber ball with your finger.

As the climate warmed, melting the ice, the ground was freed of the heavy pressure of the ice sheet. It is the constant release of this pressure that causes earthquakes in New Madrid, he explained. Zoback’s model predicts that earthquakes could continue to occur in the region for the next few thousand years.

Because a major earthquake could strike the area, Zoback said the science community must help regional officials prepare for such an event.

"What the scientific community must do is continue the fundamental research trying to understand why these earthquakes occur," he said. "At the applied level, scientists need to work with state and local officials to make sure the importance of earthquake hazards are considered in the development of building codes and critical structures such as bridges, schools and hospitals."

Zoback also cautioned that local communities must understand that seismic events, such as those in 1811 and 1812, aren’t simply history but are warnings of the potential for future earthquakes.

"It’s one thing to know it was a part of your past," he said. "It’s another to be prepared for it to be part of your future."

John B. Stafford is a science-writing intern at Stanford News Service.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>