Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model For Arctic Zone

23.01.2006


The development of a new dielectric model of tundra and forest-tundra for remote probing from space is being performed by Russian researchers from the L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences (Krasnoyarsk) jointly with the US colleagues from Michigan. The researches are sponsored by the U.S. Civilian Research & Development Foundation (CRDF) and the Federal Agency for Science and Innovation (Rosnauka). The new model will make basis for more accurate and trustworthy climatic forecasts.



Northern sub-polar areas, these being not only boundless lands of Siberia, but also vast territories of Canada and Alaska, are going through hard times. Consequences of global warming make the strongest impact on them. The temperature is rising, ice cover is decreasing, permafrost is thawing, flora is changing, arctic birds and animals are migrating. The majority of sub-polar areas is remote and difficult of access. Therefore remote probing from space is becoming now the main method of their investigation. This includes microwave and radar sounding and radiometry. Radiosounding data can provide information about streams of warm and moisture between the surface of the earth and atmosphere taking into account soil thawing and freezing. Researchers state that trustworthiness of global climate models can be increased if they take into account changes in moisture and heat streams. Reliability of moisture and heat streams determination by radiosounding depends in principle on physical reliability of the so-called soil and flora dielectric models. Russian researchers have set about to develop this particular model for tundra and forest-tundra.

The soil, per se, represents a dielectric, the properties of which may be characterized by permittivity. The latter mainly depends on water content in the soil. When soil moisture freezes and then thaws out, the soil permittivity changes abruptly. Magnitude of such sudden changes depends significantly on the content of the so-called bound soil moisture not frozen at temperatures below freezing. These fluctuations are reflected in sudden changes of brightness temperature and radar signals at microwave probing of soil. Brightness temperature – is one of important characteristics of thermal balance of the surface. It is equal to the temperature of absolute black body, which would create irradiation of the same strength in the investigated frequency band. As strength of microwave irradiation is proportionate to the black body temperature, introduction of the brightness temperature notion noticeably simplifies radiometry methods and data interpretation.


Several years ago, Siberian researchers suggested the spectroscopic dielectric model of moist soils. It took into account the mineral composition, organic matter content, volumetric moisture, temperature and wave frequency. From their part, the US colleagues developed and justified the model, binding brightness temperature with moisture and heat streams.

Now the researchers set a task to combine these two models. A new improved model for remote probing may be checked in operation by comparing it to the longstanding surface observations data. And then, the researchers believe, it will be possible to apply the model to various soils and flora found in subpolar Arctic, thus noticeably increasing the quality of climatic forecasts.

“These results are particularly important for the community of researchers who deal with remote probing in view of the scheduled space projects HYDROS and SMOS,” emphasized Valery Mironov (L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences), Corresponding Member, responsible for the Russian-US project.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>