Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model For Arctic Zone

23.01.2006


The development of a new dielectric model of tundra and forest-tundra for remote probing from space is being performed by Russian researchers from the L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences (Krasnoyarsk) jointly with the US colleagues from Michigan. The researches are sponsored by the U.S. Civilian Research & Development Foundation (CRDF) and the Federal Agency for Science and Innovation (Rosnauka). The new model will make basis for more accurate and trustworthy climatic forecasts.



Northern sub-polar areas, these being not only boundless lands of Siberia, but also vast territories of Canada and Alaska, are going through hard times. Consequences of global warming make the strongest impact on them. The temperature is rising, ice cover is decreasing, permafrost is thawing, flora is changing, arctic birds and animals are migrating. The majority of sub-polar areas is remote and difficult of access. Therefore remote probing from space is becoming now the main method of their investigation. This includes microwave and radar sounding and radiometry. Radiosounding data can provide information about streams of warm and moisture between the surface of the earth and atmosphere taking into account soil thawing and freezing. Researchers state that trustworthiness of global climate models can be increased if they take into account changes in moisture and heat streams. Reliability of moisture and heat streams determination by radiosounding depends in principle on physical reliability of the so-called soil and flora dielectric models. Russian researchers have set about to develop this particular model for tundra and forest-tundra.

The soil, per se, represents a dielectric, the properties of which may be characterized by permittivity. The latter mainly depends on water content in the soil. When soil moisture freezes and then thaws out, the soil permittivity changes abruptly. Magnitude of such sudden changes depends significantly on the content of the so-called bound soil moisture not frozen at temperatures below freezing. These fluctuations are reflected in sudden changes of brightness temperature and radar signals at microwave probing of soil. Brightness temperature – is one of important characteristics of thermal balance of the surface. It is equal to the temperature of absolute black body, which would create irradiation of the same strength in the investigated frequency band. As strength of microwave irradiation is proportionate to the black body temperature, introduction of the brightness temperature notion noticeably simplifies radiometry methods and data interpretation.


Several years ago, Siberian researchers suggested the spectroscopic dielectric model of moist soils. It took into account the mineral composition, organic matter content, volumetric moisture, temperature and wave frequency. From their part, the US colleagues developed and justified the model, binding brightness temperature with moisture and heat streams.

Now the researchers set a task to combine these two models. A new improved model for remote probing may be checked in operation by comparing it to the longstanding surface observations data. And then, the researchers believe, it will be possible to apply the model to various soils and flora found in subpolar Arctic, thus noticeably increasing the quality of climatic forecasts.

“These results are particularly important for the community of researchers who deal with remote probing in view of the scheduled space projects HYDROS and SMOS,” emphasized Valery Mironov (L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences), Corresponding Member, responsible for the Russian-US project.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>