Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model For Arctic Zone

23.01.2006


The development of a new dielectric model of tundra and forest-tundra for remote probing from space is being performed by Russian researchers from the L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences (Krasnoyarsk) jointly with the US colleagues from Michigan. The researches are sponsored by the U.S. Civilian Research & Development Foundation (CRDF) and the Federal Agency for Science and Innovation (Rosnauka). The new model will make basis for more accurate and trustworthy climatic forecasts.



Northern sub-polar areas, these being not only boundless lands of Siberia, but also vast territories of Canada and Alaska, are going through hard times. Consequences of global warming make the strongest impact on them. The temperature is rising, ice cover is decreasing, permafrost is thawing, flora is changing, arctic birds and animals are migrating. The majority of sub-polar areas is remote and difficult of access. Therefore remote probing from space is becoming now the main method of their investigation. This includes microwave and radar sounding and radiometry. Radiosounding data can provide information about streams of warm and moisture between the surface of the earth and atmosphere taking into account soil thawing and freezing. Researchers state that trustworthiness of global climate models can be increased if they take into account changes in moisture and heat streams. Reliability of moisture and heat streams determination by radiosounding depends in principle on physical reliability of the so-called soil and flora dielectric models. Russian researchers have set about to develop this particular model for tundra and forest-tundra.

The soil, per se, represents a dielectric, the properties of which may be characterized by permittivity. The latter mainly depends on water content in the soil. When soil moisture freezes and then thaws out, the soil permittivity changes abruptly. Magnitude of such sudden changes depends significantly on the content of the so-called bound soil moisture not frozen at temperatures below freezing. These fluctuations are reflected in sudden changes of brightness temperature and radar signals at microwave probing of soil. Brightness temperature – is one of important characteristics of thermal balance of the surface. It is equal to the temperature of absolute black body, which would create irradiation of the same strength in the investigated frequency band. As strength of microwave irradiation is proportionate to the black body temperature, introduction of the brightness temperature notion noticeably simplifies radiometry methods and data interpretation.


Several years ago, Siberian researchers suggested the spectroscopic dielectric model of moist soils. It took into account the mineral composition, organic matter content, volumetric moisture, temperature and wave frequency. From their part, the US colleagues developed and justified the model, binding brightness temperature with moisture and heat streams.

Now the researchers set a task to combine these two models. A new improved model for remote probing may be checked in operation by comparing it to the longstanding surface observations data. And then, the researchers believe, it will be possible to apply the model to various soils and flora found in subpolar Arctic, thus noticeably increasing the quality of climatic forecasts.

“These results are particularly important for the community of researchers who deal with remote probing in view of the scheduled space projects HYDROS and SMOS,” emphasized Valery Mironov (L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences), Corresponding Member, responsible for the Russian-US project.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>