Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Instrument Program Led by Scripps Set to Achieve World Coverage

13.09.2005


Scientists in Global Drifter Program deploy ceremonial 1,250th buoy



An ambitious idea spawned more than 20 years ago to develop a new way to watch the world change has come to fruition.

The Global Drifter Program (GDP), largely led by Scripps Institution of Oceanography at the University of California, San Diego, and Scripps Distinguished Professor Peter Niiler, will meet its lofty goal of blanketing the globe on Sept. 18 when the program’s 1,250th instrument is dropped in the ocean off Halifax, Nova Scotia, Canada.


GDP buoys, also called drifters, are designed to travel the oceans taking measurements of sea surface temperatures, ocean currents, air pressure and other parameters. By linking and disseminating the information relayed from each of these instruments in a global network, scientists and others have been able to produce new details about the world’s ocean processes, key information for weather and climate forecasting and important calibrations of satellite readings.

"When the GDP drifter data is combined with satellite measurements we can now obtain a complete, accurate map of the sea surface temperature of the world twice per week," said Niiler, a scientist in the Physical Oceanography Research Division at Scripps. "These ’weather maps’ of the ocean surface will tell us how Earth is warming up and where it is warming more than in other places. These combined data also give us an accurate picture of the changing currents and patterns of ocean circulation."

The GDP is a component of the National Oceanic and Atmospheric Administration’s (NOAA) Global Ocean Observing System and Global Climate Observing System.

According to Niiler, more than 250 research papers have been published with new findings derived through GDP circulation measurements. Many more have used its sea temperature measurements. Topics have ranged from El Niños and La Niñas to global climate change.

Niiler believes the impact of GDP information will continue to grow because of the distinct characteristics displayed in current systems off coasts around the world. Analyzing the strongest north-south current system in the world, the Agulhas Current off the eastern coast of South Africa, tells a much different story than studying the California Current, the north-south circulation of the north Pacific Ocean that travels just off California’s waters.

"The GDP observations are of great interest to people all over the world," said Niiler. "If you want to know what’s happening in your backyard, or you want to know what’s happening on a global basis, these data will assist you."

When Niiler called a meeting of scientists in Boulder, Colo., in 1982, surface temperature readings and circulation patterns were a mystery in large regions of the world, especially in the Southern Ocean.

"A large part of the world simply could not be sampled," said Niiler, "because most of the world’s ships don’t go there. We needed a new way."

Niiler and his colleagues resolved that such gaps could only be filled with a completely new system of observing the entire Earth’s oceans. They also decided that this mission could only be accomplished with the development of new ocean instruments.

With long-term support from Scripps, Niiler and his colleagues began to work with engineers in designing and developing low-cost, rugged drifters that measure currents with high accuracy and relay their sensor information through existing satellite communications systems. Scripps and Niiler eventually led the design, manufacture, deployment and research analysis of the program. Yet Scripps scientists could not do it all alone, Niiler stresses, and national and international partners played a significant role in the program’s development through organizations that include NOAA’s Atlantic Oceanographic and Meteorological Laboratory, various meteorological groups, oceanographers from 20 countries and nearly all United States government research funding agencies. In the future, NOAA will provide about 80 percent of the drifters to maintain the array.

Although the GDP has met its goal of populating the global ocean with 1,250 drifters, the array of instruments has become so valuable to science and other applications that the network will continue to grow. Challenges associated with drifter deployments in areas rarely visited by ships will be addressed by increasing future deployments by air. Drifters are now deployed by the United States Air Force’s "Hurricane Hunter Squadron" in front of hurricanes to obtain data on hurricane strength and size.

New ways of using the drifters as platforms for environmental sensors also are being explored, including measurements for rain, biochemical concentrations and surface conductivity.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>