Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Instrument Program Led by Scripps Set to Achieve World Coverage

13.09.2005


Scientists in Global Drifter Program deploy ceremonial 1,250th buoy



An ambitious idea spawned more than 20 years ago to develop a new way to watch the world change has come to fruition.

The Global Drifter Program (GDP), largely led by Scripps Institution of Oceanography at the University of California, San Diego, and Scripps Distinguished Professor Peter Niiler, will meet its lofty goal of blanketing the globe on Sept. 18 when the program’s 1,250th instrument is dropped in the ocean off Halifax, Nova Scotia, Canada.


GDP buoys, also called drifters, are designed to travel the oceans taking measurements of sea surface temperatures, ocean currents, air pressure and other parameters. By linking and disseminating the information relayed from each of these instruments in a global network, scientists and others have been able to produce new details about the world’s ocean processes, key information for weather and climate forecasting and important calibrations of satellite readings.

"When the GDP drifter data is combined with satellite measurements we can now obtain a complete, accurate map of the sea surface temperature of the world twice per week," said Niiler, a scientist in the Physical Oceanography Research Division at Scripps. "These ’weather maps’ of the ocean surface will tell us how Earth is warming up and where it is warming more than in other places. These combined data also give us an accurate picture of the changing currents and patterns of ocean circulation."

The GDP is a component of the National Oceanic and Atmospheric Administration’s (NOAA) Global Ocean Observing System and Global Climate Observing System.

According to Niiler, more than 250 research papers have been published with new findings derived through GDP circulation measurements. Many more have used its sea temperature measurements. Topics have ranged from El Niños and La Niñas to global climate change.

Niiler believes the impact of GDP information will continue to grow because of the distinct characteristics displayed in current systems off coasts around the world. Analyzing the strongest north-south current system in the world, the Agulhas Current off the eastern coast of South Africa, tells a much different story than studying the California Current, the north-south circulation of the north Pacific Ocean that travels just off California’s waters.

"The GDP observations are of great interest to people all over the world," said Niiler. "If you want to know what’s happening in your backyard, or you want to know what’s happening on a global basis, these data will assist you."

When Niiler called a meeting of scientists in Boulder, Colo., in 1982, surface temperature readings and circulation patterns were a mystery in large regions of the world, especially in the Southern Ocean.

"A large part of the world simply could not be sampled," said Niiler, "because most of the world’s ships don’t go there. We needed a new way."

Niiler and his colleagues resolved that such gaps could only be filled with a completely new system of observing the entire Earth’s oceans. They also decided that this mission could only be accomplished with the development of new ocean instruments.

With long-term support from Scripps, Niiler and his colleagues began to work with engineers in designing and developing low-cost, rugged drifters that measure currents with high accuracy and relay their sensor information through existing satellite communications systems. Scripps and Niiler eventually led the design, manufacture, deployment and research analysis of the program. Yet Scripps scientists could not do it all alone, Niiler stresses, and national and international partners played a significant role in the program’s development through organizations that include NOAA’s Atlantic Oceanographic and Meteorological Laboratory, various meteorological groups, oceanographers from 20 countries and nearly all United States government research funding agencies. In the future, NOAA will provide about 80 percent of the drifters to maintain the array.

Although the GDP has met its goal of populating the global ocean with 1,250 drifters, the array of instruments has become so valuable to science and other applications that the network will continue to grow. Challenges associated with drifter deployments in areas rarely visited by ships will be addressed by increasing future deployments by air. Drifters are now deployed by the United States Air Force’s "Hurricane Hunter Squadron" in front of hurricanes to obtain data on hurricane strength and size.

New ways of using the drifters as platforms for environmental sensors also are being explored, including measurements for rain, biochemical concentrations and surface conductivity.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>