Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep magmatic plumbing of mid-ocean ridges revealed

25.08.2005


New images suggest that the Earth’s lower oceanic crust is generated from multiple magma sources

Some of the highest quality images ever taken of the Earth’s lower crust reveal that the upper and lower crust form in two distinctly different ways. A team led by researchers from Columbia University’s Lamont-Doherty Earth Observatory will publish the results of their work in the August 25 issue of the journal Nature.

The Earth’s oceanic crust is formed from magma bodies located beneath mid-ocean ridges. Although axial magma chambers, magma bodies located in the mid-crust, are known to be responsible for generating the upper oceanic crust, it has so far been unclear if the lower crust is formed from the same source or if it primarily arises from deeper "magma lenses" -- smaller bodies located at or near the base of the crust.



Researchers from Lamont-Doherty as well as the Scripps Institution of Oceanography and the Woods Hole Oceanographic Institution collected seismic data of the oceanic crust beneath the seafloor off the coast of Washington, Oregon and northern California. To form the images, they analyzed sound waves that bounced off of structures deep in the Earth, a process similar to that of creating an ultrasound image. The resulting images are the first of their kind showing solidified lenses and sills, narrow lateral intrusions of magma, embedded within the crust/mantle boundary known as the Moho transition zone. The presence of such bodies that deep near a mid-ocean ridge suggests that the lower crust is at least partially formed from several smaller sources of magma rather than from a single large source located in the middle of the crust.

"This demonstrates quite strongly that the process of crustal formation is more complex than generally believed," said Mladen Nedimovic, lead author on the study and a Doherty Associate Research Scientist at Lamont-Doherty. "It also favors the emerging view that volcanoes have a complicated plumbing system consisting of many interconnected sills and magma conduits. We obviously still have a lot to learn about what goes on beneath the surface of the Earth."

Ken Kostel | EurekAlert!
Further information:
http://www.columbia.edu
http://www.earth.columbia.edu
http://www.ldeo.columbia.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>