Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

San Andreas earthquake observatory achieves milestone as drillers penetrate the active fault zone

04.08.2005


The San Andreas Fault Observatory at Depth (SAFOD) reached a significant goal on Aug. 2 when scientists drilled into a seismically active section of the fault approximately two miles below the surface of the Earth.



"This is a milestone for SAFOD," says Mark Zoback, a professor of geophysics at Stanford University. "For the first time, scientists have drilled directly into the San Andreas Fault Zone at a depth that will allow us to observe earthquakes up close for decades to come."

Zoback is co-principal investigator of the SAFOD project, along with geophysicists Steve Hickman and Bill Ellsworth of the U.S. Geological Survey (USGS) in Menlo Park, Calif.


"It’s the first time we’ve been inside the earthquake machine," Ellsworth says. "We’ve looked at the fossil earthquakes, we’ve made computer models, and we’ve made laboratory earthquakes. We’ve studied them from afar, but we’ve never been inside the machine where the action is."

When completed in 2007, SAFOD will be the only earthquake observatory with instruments installed directly within an active fault where earthquakes form or "nucleate." Scientists also will be able to bring up actual rock and mineral samples from the earthquake zone. "With SAFOD, we’ll be able to recreate the earthquake process in the laboratory using real materials and under real conditions that exist in the San Andreas Fault Zone at depth," Hickman says. "That’s unique."

Launched in 2003, SAFOD is one of three major components of EarthScope, a National Science Foundation-funded initiative being carried out in collaboration with USGS. EarthScope is designed to investigate the powerful geological forces that shape the North American continent. The other EarthScope projects, USArray and the Plate Boundary Observatory, are large-scale research efforts focusing on deformation and properties of the Earth’s crust in North America.

EarthScope is combining data from the SAFOD borehole with thousands of seismic, strainmeter and GPS measurements from across the continent. "We now have the first opportunity to measure directly the conditions under which earthquakes initiate and grow," says Herman Zimmerman, director of the NSF Division of Earth Sciences. "This is an unprecedented step forward in understanding these dangerous phenomena."

Plate tectonics

SAFOD is being built on private ranchland near the rural town of Parkfield in central California, about halfway between San Francisco and Los Angeles. The ranch straddles the San Andreas Fault, an 800-mile-long rift that marks the boundary between the Pacific and North American tectonic plates. These two enormous landmasses constantly grind against each other in opposite directions, triggering earthquakes of various magnitudes up and down the fault.

"Almost everything we know about earthquakes has been gathered either at or very close to the Earth’s surface, where all we see is the elastic part of the process, the part that carries seismic waves to great distance," Ellsworth says. "SAFOD gets into the inelastic part where things are actually breaking. That’s the part we can only see by getting into the fault zone."

Drilling of the observatory borehole began in June 2004 and continued until mid-October, the end of the dry season in California. Drilling resumed on June 10, 2005, and on Aug. 2 drill operators finally entered the San Andreas Fault Zone, reaching a maximum depth about 2 miles below the surface of the Earth.

The borehole begins on the Pacific plate just west of the fault, passes through the active earthquake zone and winds up in the North American plate east of the fault--a distance of 3 miles. Seismic instruments will be installed along both plates in a section of the fault where small temblors of magnitude 2.0 are frequent. While these microearthquakes usually aren’t felt at the surface, they can offer important clues about the origin of bigger, more destructive quakes. "Microearthquakes provide scientists an exciting opportunity to study events that occur about every two years in roughly the same place," Zoback explains. "It’s a live, active system, and we’re building an observatory directly within it."

SAFOD instrumentation will provide around-the-clock observations of temperature, fluid pressure, strain accumulation and other processes before, during and after microearthquakes occur. "That’s really at the heart of determining whether earthquake prediction is possible, and if it is, how you might go about doing it," Hickman notes. "You cannot do those kinds of in-depth observations in parts of the fault that only produce big earthquakes, because those usually occur at intervals of 100 to 150 years or so."

Fundamental theories

In addition to monitoring the earthquake nucleation process, SAFOD researchers plan to address a number of fundamental scientific questions. For example, in what ways are plate boundaries such as the San Andreas unique? Why are they so narrow? Why do they persist for millions of years? What makes them so weak relative to that crust that’s adjacent to them?

"We have numerous theories about how earthquakes work that have been developed over the last 20 years based on remote geophysical observations of active faults or geologic examination of faults exhumed by erosion that are no longer active," Hickman says. "For the dozens of scientists involved in SAFOD, this is really their first opportunity to test these ideas and see which ones are right."

When drilling is completed in August, the entire borehole will be encased in steel and cement so that sensitive instruments--such as seismometers, strainmeters, and fluid and temperature gauges--can be installed underground. Meanwhile, scientists will begin to collect rock, gas and mineral samples from the fault zone for laboratory analysis.

Over the next two years, geophysicists also will try to identify precise areas in the fault zone where microearthquakes regularly occur. In 2007, project engineers will begin drilling into those active areas and installing the instruments. The observatory is expected to operate for 20 years and give researchers a unique window into the process of stress buildup and release in the fault zone during numerous microearthquakes.

"It’s a whole new type of experiment," Zoback concludes. "It’s opening doors to research we haven’t been able to consider before because we’ve never been able to do experiments within an active fault. It’s a very exciting time for earthquake science."

Mark Shwartz | EurekAlert!
Further information:
http://wwwstanford.edu

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>