Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


San Andreas earthquake observatory achieves milestone as drillers penetrate the active fault zone


The San Andreas Fault Observatory at Depth (SAFOD) reached a significant goal on Aug. 2 when scientists drilled into a seismically active section of the fault approximately two miles below the surface of the Earth.

"This is a milestone for SAFOD," says Mark Zoback, a professor of geophysics at Stanford University. "For the first time, scientists have drilled directly into the San Andreas Fault Zone at a depth that will allow us to observe earthquakes up close for decades to come."

Zoback is co-principal investigator of the SAFOD project, along with geophysicists Steve Hickman and Bill Ellsworth of the U.S. Geological Survey (USGS) in Menlo Park, Calif.

"It’s the first time we’ve been inside the earthquake machine," Ellsworth says. "We’ve looked at the fossil earthquakes, we’ve made computer models, and we’ve made laboratory earthquakes. We’ve studied them from afar, but we’ve never been inside the machine where the action is."

When completed in 2007, SAFOD will be the only earthquake observatory with instruments installed directly within an active fault where earthquakes form or "nucleate." Scientists also will be able to bring up actual rock and mineral samples from the earthquake zone. "With SAFOD, we’ll be able to recreate the earthquake process in the laboratory using real materials and under real conditions that exist in the San Andreas Fault Zone at depth," Hickman says. "That’s unique."

Launched in 2003, SAFOD is one of three major components of EarthScope, a National Science Foundation-funded initiative being carried out in collaboration with USGS. EarthScope is designed to investigate the powerful geological forces that shape the North American continent. The other EarthScope projects, USArray and the Plate Boundary Observatory, are large-scale research efforts focusing on deformation and properties of the Earth’s crust in North America.

EarthScope is combining data from the SAFOD borehole with thousands of seismic, strainmeter and GPS measurements from across the continent. "We now have the first opportunity to measure directly the conditions under which earthquakes initiate and grow," says Herman Zimmerman, director of the NSF Division of Earth Sciences. "This is an unprecedented step forward in understanding these dangerous phenomena."

Plate tectonics

SAFOD is being built on private ranchland near the rural town of Parkfield in central California, about halfway between San Francisco and Los Angeles. The ranch straddles the San Andreas Fault, an 800-mile-long rift that marks the boundary between the Pacific and North American tectonic plates. These two enormous landmasses constantly grind against each other in opposite directions, triggering earthquakes of various magnitudes up and down the fault.

"Almost everything we know about earthquakes has been gathered either at or very close to the Earth’s surface, where all we see is the elastic part of the process, the part that carries seismic waves to great distance," Ellsworth says. "SAFOD gets into the inelastic part where things are actually breaking. That’s the part we can only see by getting into the fault zone."

Drilling of the observatory borehole began in June 2004 and continued until mid-October, the end of the dry season in California. Drilling resumed on June 10, 2005, and on Aug. 2 drill operators finally entered the San Andreas Fault Zone, reaching a maximum depth about 2 miles below the surface of the Earth.

The borehole begins on the Pacific plate just west of the fault, passes through the active earthquake zone and winds up in the North American plate east of the fault--a distance of 3 miles. Seismic instruments will be installed along both plates in a section of the fault where small temblors of magnitude 2.0 are frequent. While these microearthquakes usually aren’t felt at the surface, they can offer important clues about the origin of bigger, more destructive quakes. "Microearthquakes provide scientists an exciting opportunity to study events that occur about every two years in roughly the same place," Zoback explains. "It’s a live, active system, and we’re building an observatory directly within it."

SAFOD instrumentation will provide around-the-clock observations of temperature, fluid pressure, strain accumulation and other processes before, during and after microearthquakes occur. "That’s really at the heart of determining whether earthquake prediction is possible, and if it is, how you might go about doing it," Hickman notes. "You cannot do those kinds of in-depth observations in parts of the fault that only produce big earthquakes, because those usually occur at intervals of 100 to 150 years or so."

Fundamental theories

In addition to monitoring the earthquake nucleation process, SAFOD researchers plan to address a number of fundamental scientific questions. For example, in what ways are plate boundaries such as the San Andreas unique? Why are they so narrow? Why do they persist for millions of years? What makes them so weak relative to that crust that’s adjacent to them?

"We have numerous theories about how earthquakes work that have been developed over the last 20 years based on remote geophysical observations of active faults or geologic examination of faults exhumed by erosion that are no longer active," Hickman says. "For the dozens of scientists involved in SAFOD, this is really their first opportunity to test these ideas and see which ones are right."

When drilling is completed in August, the entire borehole will be encased in steel and cement so that sensitive instruments--such as seismometers, strainmeters, and fluid and temperature gauges--can be installed underground. Meanwhile, scientists will begin to collect rock, gas and mineral samples from the fault zone for laboratory analysis.

Over the next two years, geophysicists also will try to identify precise areas in the fault zone where microearthquakes regularly occur. In 2007, project engineers will begin drilling into those active areas and installing the instruments. The observatory is expected to operate for 20 years and give researchers a unique window into the process of stress buildup and release in the fault zone during numerous microearthquakes.

"It’s a whole new type of experiment," Zoback concludes. "It’s opening doors to research we haven’t been able to consider before because we’ve never been able to do experiments within an active fault. It’s a very exciting time for earthquake science."

Mark Shwartz | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>