Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismologists publish detailed analysis of the great Sumatra-Andaman earthquake

23.05.2005


The great Sumatra-Andaman earthquake of December 26, 2004, was an event of stunning proportions, both in its human dimensions--nearly 300,000 lives lost--and as a geological phenomenon. The sudden rupture of a huge fault beneath the Indian Ocean unleashed a devastating tsunami. It was the largest earthquake in the past 40 years and was followed by the second largest just three months later (March 28, 2005) on an adjacent fault.



Modern monitoring technology gathered an unprecedented amount of seismological data on these extraordinary events. Three papers published this week in the May 20 issue of the journal Science by an international group of seismologists provide a comprehensive scientific analysis of the earthquakes. The Incorporated Research Institutions for Seismology (IRIS), a university research consortium, played a central role in bringing about this coordinated report from three teams of experts. IRIS, funded by the National Science Foundation, operates a global network of seismic monitoring stations that provided much of the data for the analysis.

"We wanted to give as unified and comprehensive a report as possible, rather than having bits and pieces of it come out in separate papers," said Thorne Lay, professor of Earth sciences and director of the Institute of Geophysics and Planetary Physics at the University of California, Santa Cruz, and chair of the board of directors of IRIS.


Lay organized the overall effort and solicited contributions for the three papers from leading seismological researchers at U.S. and international research programs. David Simpson, president of IRIS, helped Lay arrange for the papers to be published together in a special section of Science.

"This is really a watershed event," Lay said. "We’ve never had such comprehensive data for a great earthquake, because we didn’t have the instrumentation to gather it 40 years ago. And then the sheer size of the event is so awesome. It is nature at its most formidable, and it has been humbling to all of us who have studied it. The willingness of the seismological research community to work together to give a comprehensive report on the earthquake reflects our understanding of the importance of this event."

Lay is lead author of the first Science paper, which provides an overview of the two earthquakes, and he is a coauthor on the second paper, which focuses on the processes involved in the rupture of the fault. The third paper describes how the earthquakes caused the whole planet to vibrate with "free oscillations," like the ringing of a bell. A complete list of the authors of each paper can be found at the end of this press release.

The two earthquakes are the largest that have happened since the global deployment of highly sensitive digital broadband seismometers. These instruments, deployed around the world by IRIS and other organizations, recorded both the huge ground motions from the mainshocks and the tiny motions from small aftershocks and free oscillations of the planet.

Record-setting features of the Sumatra-Andaman earthquake of December 26, 2005, include the longest fault rupture ever observed (1,200 to 1,300 kilometers, or 720 to 780 miles) and the longest duration of faulting (at least 10 minutes). The aftershocks included the most energetic earthquake swarm ever observed.

The ground motions during the prolonged, intense shaking of the mainshock were greater than in any earthquake previously recorded by global broadband seismometers. As far away as Sri Lanka, a thousand miles from the epicenter, the ground moved up and down by more than 9 centimeters (3.6 inches). Ground motions greater than 1 centimeter (0.4 inch), but too gradual to be felt, occurred everywhere on Earth’s surface as seismic waves from the event spread around the globe.

The 10-minute duration of the rupture complicated the seismological analysis, Lay said. An earthquake generates many different kinds of seismic waves, including fast-moving P waves and slower-moving S waves. In an earthquake with a more typical duration of 30 seconds, S waves would start to arrive at seismic monitoring stations minutes after the P waves had passed. But in the Sumatra-Andaman earthquake, the P waves were still coming when the S waves started to arrive, making it hard to sort out the signals.

"Nobody’s algorithms were tuned to work with this kind of earthquake, so we had to take all of the methods we have applied successfully to smaller earthquakes and expand and adapt them for this earthquake that just went on and on," Lay said.

The new analysis gives the Sumatra-Andaman earthquake a seismic magnitude of at least 9.1, and possibly as high as 9.3. Earlier estimates had put it at magnitude 9.0. By comparison, the 1960 Chile earthquake was magnitude 9.5, and the 1964 Alaska earthquake was magnitude 9.2. The data from those earlier earthquakes are relatively limited, however, and small differences in magnitude may not be significant, Lay said.

For those who experienced California’s 1989 Loma Prieta earthquake--a magnitude 6.9 event that caused major destruction from Santa Cruz to the San Francisco Bay Area--Lay noted that the ground shook more than 100 times harder during the Sumatra-Andaman earthquake. Even some of the aftershocks were more powerful than the Loma Prieta quake.

"Even among seismologists, we call this a monster earthquake," Lay said.

The earthquake took place along the curving boundary between major plates of the Earth’s crust, where the Indo-Australian plate plunges beneath the southeastern Eurasian plate. Before the fault ruptured, the edge of the Eurasian plate was being dragged downward by the descending Indo-Australian plate. Released by the rupture of the fault, the edge of the plate sprang back up, uplifting the ocean floor and setting off the tsunami that inundated coastal areas throughout the Indian Ocean. The fault slipped by as much as 15 meters (50 feet) in places, averaging about 10 meters (33 feet) of displacement along the segment off the northwestern tip of Sumatra where the quake was centered.

From the epicenter, the rupture expanded along the fault at a speed of about 2.5 kilometers per second (1.5 miles per second) toward the north-northwest. But the initial movement of the fault was much less along the northern segment than in the south. This was fortunate, because it spared much of the coastline in the north from the massive tsunami waves that caused so much destruction further south. Eventually, the northern part of the fault slipped about as much as the southern part, uplifting and tilting the Andaman Islands. The tilting of the islands shows that the northern part must have slipped about 10 meters, but much of that slip occurred gradually, without generating seismic waves.

"We think that slip was occurring in the northern part for about an hour, well after the 10 minutes of rapid motions were over," Lay said.

UCSC geophysicist Steven Ward generated models of the tsunami waves that document this long slip process. Ward used a unique recording of the tsunami spreading across the Indian Ocean obtained by a radar altimetry satellite (Jason) that happened to be passing overhead. The satellite data showed a trough in the central Bay of Bengal two hours after the earthquake, which is best explained by late slip beneath the Andaman Islands, according to Ward’s tsunami models.

"The satellite image of the tsunami is quite exciting because such data open a new window through which earthquake rupture processes can be observed, and it also suggests that radar satellites might some day be able to provide direct real-time warning of an approaching tsunami wave," Ward said.

After the earthquake and the tsunami came the aftershocks, including the most energetic earthquake swarm ever observed. More than 150 earthquakes of magnitude 5 and greater occurred over a four-day period in late January on faults beneath the Andaman Sea that were activated by the rupture of the main fault along the plate boundary to the west. There were also numerous aftershocks of magnitude 6 and greater throughout the fault zone.

"It’s an incredible aftershock series," Lay said. "It is hard to get a feeling for the scale of it. If you take the aftershock zone and superimpose it on California, it completely covers the state."

Then the March 28 earthquake struck with a magnitude of 8.6 on an adjacent portion of the plate boundary to the southeast. This was not an aftershock, but a new rupture of an adjacent segment of the fault. Now, concern about additional earthquakes is focused on the next area to the southeast, which last failed in a great earthquake in 1833. Major earthquakes could occur not only on the thrust fault along the plate boundary, but also on a related fault system beneath the island of Sumatra. Faulting on that system involves horizontal shearing, similar to the San Andreas Fault.

"The Sumatra Fault runs right down the length of the island. Because it is close to major population centers, the seismic hazard is significant even for a smaller event," Lay said.

Major faults elsewhere in the world--in northern Turkey, for example--have experienced sequences of earthquakes moving progressively along a fault line.

"When one part of the fault slides, that loads up the adjacent region and transfers stress. So you have a heightened potential for earthquakes on the adjacent section. The concern is that something like that could happen in Sumatra," Lay said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>