Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Angeles ’big squeeze’ continues, straining earthquake faults

20.05.2005


Northern metropolitan Los Angeles is being squeezed at a rate of five millimeters [0.2 inches] a year, straining an area between two earthquake faults that serve as geologic bookends north and south of the affected region, according to NASA scientists.



The compression of the Los Angeles landscape is being monitored by a network of more than 250 precision global positioning system (GPS) receivers, known as the Southern California Integrated Global Positioning System Network (SCIGN), as well as by measurements from interferometric synthetic aperture radar (InSAR) satellites operated by the European Space Agency (ESA).

Information from these two sources of precision ground deformation measurements is accumulating and enhancing our knowledge of the forces shaping the land surface in the Los Angeles region. These forces include motions of the North American and Pacific tectonic plates and ground movement caused by human activities, such as oil drilling and pumping water into and out of local aquifers.


A team of scientists from NASA’s Jet Propulsion Laboratory and University of California at Los Angeles, led by Donald Argus, set out to distinguish between motions induced by human activity and those generated by movements of Earth’s tectonic plates. Their results, published in the Journal of Geophysical Research (Solid Earth) in April, indicate human-caused motions are very slow and could not account for the significant ground shift observed in northern Los Angeles.

The new study used space-based navigation to determine the exact position of hundreds of points around the metropolitan area to measure the strain building up across faults. Scientists expect that the strain will ultimately be released in earthquakes much like the 1994 Northridge temblor. The study also suggests which faults might be most likely to rupture. "These findings remove uncertainty about the rate at which strain is building up in northern metropolitan Los Angeles," Argus said. "In addition, by taking into account the effects of humans and observations from the many new global positioning system sites established in the past few years, we can identify the areas where strain is building the fastest."

He cautioned, however, that more studies are needed, since scientists do not yet fully understand the consequences and risks of this stress accumulation. "Nevertheless, these data have important implications for hazard management and retrofitting strategies," he said.

The study finds strain is rapidly accumulating within an area 12 to 25 kilometers [7.5 to 16 miles] south of the San Gabriel Mountains, primarily in the San Gabriel and San Fernando Valleys and nearby hills. The region is located between the Puente Hills fault, which begins south of downtown Los Angeles and extends east, and the Sierra Madre fault, which runs along the base of the San Gabriel Mountains

The new analysis indicates the crust above the Los Angeles segment of the Puente Hills Fault is being squeezed the most. The finding suggests that the Puente Hills Fault and nearby faults in the area, such as the upper Elysian Park Fault, may be more likely to break than those elsewhere in metropolitan Los Angeles. Previous studies have estimated the Puente Hills Fault might generate an earthquake of magnitude 6.6 to 7.5.

The researchers constructed models of the accumulating strain, varying which faults "creep" (move continuously without producing earthquakes), how fast they creep, and the depths at which the faults go from being "locked" in place (and building strain) to creeping. The model that best fit the actual global positioning system observations is one in which a thrust fault (a fault where one block of Earth shifts up or down relative to the other) is locked above six kilometers [four miles] deep and creeps at about nine millimeters [0.4 inches] a year beneath that depth. From that model, they inferred that the deep part of the Los Angeles segment of the Puente Hills Fault is creeping, as is a deep unknown buried fault east of downtown that lies north of the Whittier Fault and south of the Sierra Madre Fault. The model does not allow the researchers to determine which fault segments are locked.

Argus said a significant discrepancy exists between the relatively shallow locking depth of their model and the historical record of the depth of earthquakes that struck the region in 1971 and 1994, which were much deeper. Scientists speculate the discrepancy may be due to the presence of sediments filling parts of the Los Angeles basin. Further studies are planned to examine how these sediments may be affecting fault strain in the region.

The study used InSAR data collected from 1992 to 2000 from ESA’s European Remote Sensing satellite to estimate vertical ground motion. Horizontal strain buildup measurements were made from SCIGN observations from 1994 to 2004.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>