Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global wind map may provide better locations for wind farms

18.05.2005


A new global wind power map has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. After analyzing more than 8,000 wind speed measurements in an effort to identify the world’s wind power potential for the first time, Cristina Archer and Mark Jacobson of Stanford University suggest that wind captured at specific locations, if even partially harnessed, can generate more than enough power to satisfy the world’s energy demands. Their report will be published in May in the Journal of Geophysical Research-Atmospheres, a publication of the American Geophysical Union.



The researchers collected wind speed measurements from approximately 7,500 surface stations and another 500 balloon-launch stations to determine global wind speeds at 80 meters [300 feet] above the ground surface, which is the hub height of modern wind turbines. Using a new interpolation technique to estimate the wind speed at that elevation, the authors report that nearly 13 percent of the stations they reviewed experience winds with an average annual speed strong enough for power generation. They note that, based on their expectations of other global areas, an even greater percentage of locations would likely reach the 6.9 meters per second [15 miles per hour] wind speed considered strong enough to be economically feasible.

Such wind speeds at 80 meters, referred to as wind power Class 3, were found in every region of the world, although North America was found to have the greatest wind power potential. The researchers also found that some of the strongest winds were observed in Northern Europe, along the North Sea, while the southern tip of South America and the Australian island of Tasmania also recorded significant and sustained strong winds at the turbine blade height. In North America, the most consistent winds were found in the Great Lakes region and from ocean breezes along the eastern, western and southern coasts. Overall, the researchers calculated winds at 80 meters [300 feet] traveled over the ocean at approximately 8.6 meters per second and at nearly 4.5 meters per second over land [20 and 10 miles per hour, respectively].


"The main implication of this study is that wind, for low-cost wind energy, is more widely available than was previously recognized," Archer said. "The methodology in the paper can be utilized for several applications, such as determining elevated wind speeds in remote areas or to evaluate the benefits of distributed wind power."

The study also estimated the amount of global wind power that could be harvested at locations with suitably strong winds. The authors found that the locations with sustainable Class 3 winds could produce approximately 72 terawatts and that capturing even a fraction of that energy could provide the 1.6-1.8 terawatts that made up the world’s electricity usage in the year 2000. A terawatt is 1 trillion watts, a quantity of energy that would otherwise require more than 500 nuclear reactors or thousands of coal-burning plants. Converting as little as 20 percent of potential wind energy to electricity could satisfy the entirety of the world’s energy demands, but the researchers caution that there are considerable practical barriers to reaping the wind’s potential energy.

Chief among those barriers is creating and maintaining a dense array of modern turbines that would be needed to harness the wind power. Some sources have suggested that millions of turbines would be needed to produce an acceptable level of energy and that alternative energy sources would still be necessary to produce power when the wind speeds fall below a certain threshold. Creating a large field of turbines could also be hazardous to birds and may produce unacceptable noise levels.

The current research, however, indicates that several of those limitations can be overcome with better placement of wind turbines. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent winds, which may help avoid some of the problems with intermittent winds. In addition, they suggest that the inland locations of many existing wind farms may explain their inefficiency.

"It is our hope that this study will foster more research in areas that were not covered by our data, or economic analyses of the barriers to the implementation of a wind-based global energy scenario," Archer concluded.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>