Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expedition to second undersea canyon will study differences in ocean crust construction

14.01.2005


The second Duke University-led expedition since 1999 to a deep underwater canyon will take geologists to another place in the eastern Pacific Ocean where new sea floor was forged out of volcanic lava within the past several million years.

The Pito Deep trough, positioned as deep as 19,600 feet below the ocean’s surface just west of Easter Island, will offer scientists a rare chance to study the internal geology of such ocean floor crust making processes.

The internal geology is accessible in the rift because it opens up the geologically young crust like a layer cake slice as thick as 1 1/2 miles, exposing now cooled and hardened conduits that once channeled molten rock towards the ocean floor surface. "Our investigation will look at the architecture of the crust and the composition of the rock that’s there," said the expedition’s chief scientist, Jeff Karson, who is a geology professor with Duke’s Nicholas School of the Environment and Earth Sciences. "There will always be surprises," Karson added. "We know so little about the submerged part of our planet that we find something new and exciting virtually every time we travel to the seafloor."



Working from the Woods Hole Oceanographic Institution-based research ship R/V Atlantis, the scientists expect to be positioned over Pito Deep between Jan. 31 and Feb. 28.

A Nicholas School web site http://www.nicholas.duke.edu/pitodeep/ will be following the action as the scientists use the research submarine Alvin to explore the canyon’s walls, as well as dispatching an underwater robotic craft called Jason II to make photos and videos of the rockscape.

In 1999 Karson was also chief scientist on an expedition aboard the same ship to a larger eastern Pacific canyon called Hess Deep, located near the Galapagos Islands. Both Hess Deep and Pito Deep cut into crust created along different stretches of the East Pacific Rise, part of the volcanic ocean ridge system that circles the globe.

In a continuing process, new ocean crust forms at the East Pacific Rise when hot molten rock -- called "magma" -- erupts and cools in subsurface magma chambers. As it cools and solidifies, the resulting newly made crust then creeps away from the ridge axis like a slow motion conveyor belt. The new expedition will target differences between Pito Deep and Hess Deep rather than the similarities.

New crust made at Pito Deep creeps away from the East Pacific Rise at a rate greater than 144 millimeters a year, which geologists call "superfast." That contrasts with a migration rate of only 110 millimeters at Hess Deep, considered merely "fast." A millimeter is about 0.4 inches. "Our upcoming work at Pito Deep aims to explore whether there are identifiable differences in the structure and composition of ocean crust as a function of those differing spreading rates," said Emily Klein, a Nicholas School associate geology professor who will be among the expedition’s other principal investigators.

Karson and Klein will be joined by three other principal investigators, David Naar of the University of South Florida, Richard Hey of the University of Hawaii and Jeff Gee of the Scripps Institution of Oceanography in California.

Other participating scientists will include Bob Varga of the College of Wooster in Ohio, Katherine Gillis of the University of Victoria in British Columbia, Stephen Hurst of the University of Illinois and Christopher Popham of the University of Rhode Island.

Five graduate students from Duke and other institutions will also participate in the cruise. Klein, Varga, Gillis and Hurst were previously on the 1999 Hess Deep cruise along with Karson.

Monte Basgall | EurekAlert!
Further information:
http://www.nicholas.duke.edu/pitodeep/
http://www.duke.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>