Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saharan Dust Affects Thunderstorm Behavior in Florida

12.01.2005


Saharan Dust Blowing off Northwest Africa: This is an image of dust storms taken by NASA’s SeaWiFS satellite, taken on Feb. 28, 2000. Click on image to enlarge. Credit: NASA


A Microscopic Look at Dust: This particle of dust was magnified 12,000 times. Click on image to enlarge. Credit: USGS


People that live in Florida would expect the sands from the state beaches to blow into the air, and usually don’t think of the sands and dust from the Saharan Desert twirling around them. However, winds do carry the desert dust across the Atlantic Ocean, and scientists have been studying what they do to Florida Thunderstorms.

Scientists have discovered that these tiny particles of dust from the Saharan desert can affect thunderstorms in Florida in various ways. Dust affects the size of a thunderstorm’s "anvil" or top, the strength and number of warm updrafts (rising air), and the amount of rain that builds up and falls from the "heat generated" or convective thunderstorms.

Findings on the "Impact of Saharan Dust on Florida Storm Characteristics" were presented at the 2005 annual meeting of the American Meteorological Society on Jan. 11 at the San Diego Convention Center in San Diego, Calif. Susan C. van den Heever, Gustavo G. Carrio, William R. Cotton, Paul. J. DeMott and Anthony J. Prenni, all of Colorado State University, Fort Collins, Colo. co-authored a study which will appear in a forthcoming issue of the Journal of Atmospheric Sciences.



Working with her colleagues, van den Heever found that when Saharan dust is in the air, the thunderstorm anvils created by Florida’s convective thunderstorms tend to be a little smaller in area, but they tend to be better organized and thicker. This affects the amount of incoming sunlight and warmth reaching the ground, which can have effects on long-term climate. Over time, more sunlight would warm temperatures, less sunlight would cool temperatures.

The researchers also noticed that the updrafts of warm moist air, which build into thunderstorms, were stronger, and that there were more of these updrafts produced in the presence of the dust. These updrafts also carry tiny particles of pollution called aerosols up into all levels of the building thunderclouds.

Florida residents not only see more updrafts developing during dust events, but the dust affects the amount of rainfall that reaches the ground. Dust is an aerosol, and aerosols or little particles serve as the center or nuclei (called a cloud condensation nuclei) for cloud droplets to form around. These cloud droplets then combine to form raindrops which fall to the ground. As such, aerosols affect the production of rainfall.

There are three types of nuclei that Saharan dust can be. They can act as the center or nuclei for water vapor as a CCN, GCCN (Giant Cloud Condensation Nuclei) and IN (Ice Nuclei), where ice forms around a dust particle center. Van den Heever used a computer model to see how the atmosphere and clouds react with Saharan dust and without the desert dust. She then compared the results and found something unusual. The dust increased the number of centers or nuclei for raindrops and decreased the amount of rainfall at the Earth’s surface.

Nuclei or centers for droplets in a cloud compete for a limited amount of water vapor and liquid water to form raindrops. When there are many particles that act as a center for water vapor, there is less water for each center, resulting in smaller cloud droplets. As such, it is less likely that raindrops will form when droplets combine.
the stratosphere. Click on image to enlarge. Credit: NASA

The scientists also found that greater concentrations of Giant CCN (GCCN) as well as ice nuclei initially resulted in more rainfall reaching the surface. However, as the storms continued to develop, the two types of nuclei were removed from the storms by the precipitation and these nuclei then had less of an effect on the amount of rain reaching the surface. The scientists concluded that the overall effect of the Saharan dust on the surface rainfall was to reduce it.

The scientists used data from NASA’s CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment) field campaign to examine the affects of increased numbers of nuclei from the dust and pollutants. The purpose of the CRYSTAL-FACE mission was to study cirrus clouds to improve forecasts of future climate change.

The scientists concluded that Saharan dust can have a major impact on the amount of rainfall produced by thunderstorms in Florida. Also, because dust affects the size and thickness of thunderstorm anvils, the changes affect the amount of sunlight reaching Earth and being reflected by the clouds, which have implications for a changing climate. Finally, this research can also help answer questions about how tiny particles called aerosols and other pollutants move around the world in the upper atmosphere.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/florida_dust.html
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>