Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saharan Dust Affects Thunderstorm Behavior in Florida

12.01.2005


Saharan Dust Blowing off Northwest Africa: This is an image of dust storms taken by NASA’s SeaWiFS satellite, taken on Feb. 28, 2000. Click on image to enlarge. Credit: NASA


A Microscopic Look at Dust: This particle of dust was magnified 12,000 times. Click on image to enlarge. Credit: USGS


People that live in Florida would expect the sands from the state beaches to blow into the air, and usually don’t think of the sands and dust from the Saharan Desert twirling around them. However, winds do carry the desert dust across the Atlantic Ocean, and scientists have been studying what they do to Florida Thunderstorms.

Scientists have discovered that these tiny particles of dust from the Saharan desert can affect thunderstorms in Florida in various ways. Dust affects the size of a thunderstorm’s "anvil" or top, the strength and number of warm updrafts (rising air), and the amount of rain that builds up and falls from the "heat generated" or convective thunderstorms.

Findings on the "Impact of Saharan Dust on Florida Storm Characteristics" were presented at the 2005 annual meeting of the American Meteorological Society on Jan. 11 at the San Diego Convention Center in San Diego, Calif. Susan C. van den Heever, Gustavo G. Carrio, William R. Cotton, Paul. J. DeMott and Anthony J. Prenni, all of Colorado State University, Fort Collins, Colo. co-authored a study which will appear in a forthcoming issue of the Journal of Atmospheric Sciences.



Working with her colleagues, van den Heever found that when Saharan dust is in the air, the thunderstorm anvils created by Florida’s convective thunderstorms tend to be a little smaller in area, but they tend to be better organized and thicker. This affects the amount of incoming sunlight and warmth reaching the ground, which can have effects on long-term climate. Over time, more sunlight would warm temperatures, less sunlight would cool temperatures.

The researchers also noticed that the updrafts of warm moist air, which build into thunderstorms, were stronger, and that there were more of these updrafts produced in the presence of the dust. These updrafts also carry tiny particles of pollution called aerosols up into all levels of the building thunderclouds.

Florida residents not only see more updrafts developing during dust events, but the dust affects the amount of rainfall that reaches the ground. Dust is an aerosol, and aerosols or little particles serve as the center or nuclei (called a cloud condensation nuclei) for cloud droplets to form around. These cloud droplets then combine to form raindrops which fall to the ground. As such, aerosols affect the production of rainfall.

There are three types of nuclei that Saharan dust can be. They can act as the center or nuclei for water vapor as a CCN, GCCN (Giant Cloud Condensation Nuclei) and IN (Ice Nuclei), where ice forms around a dust particle center. Van den Heever used a computer model to see how the atmosphere and clouds react with Saharan dust and without the desert dust. She then compared the results and found something unusual. The dust increased the number of centers or nuclei for raindrops and decreased the amount of rainfall at the Earth’s surface.

Nuclei or centers for droplets in a cloud compete for a limited amount of water vapor and liquid water to form raindrops. When there are many particles that act as a center for water vapor, there is less water for each center, resulting in smaller cloud droplets. As such, it is less likely that raindrops will form when droplets combine.
the stratosphere. Click on image to enlarge. Credit: NASA

The scientists also found that greater concentrations of Giant CCN (GCCN) as well as ice nuclei initially resulted in more rainfall reaching the surface. However, as the storms continued to develop, the two types of nuclei were removed from the storms by the precipitation and these nuclei then had less of an effect on the amount of rain reaching the surface. The scientists concluded that the overall effect of the Saharan dust on the surface rainfall was to reduce it.

The scientists used data from NASA’s CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment) field campaign to examine the affects of increased numbers of nuclei from the dust and pollutants. The purpose of the CRYSTAL-FACE mission was to study cirrus clouds to improve forecasts of future climate change.

The scientists concluded that Saharan dust can have a major impact on the amount of rainfall produced by thunderstorms in Florida. Also, because dust affects the size and thickness of thunderstorm anvils, the changes affect the amount of sunlight reaching Earth and being reflected by the clouds, which have implications for a changing climate. Finally, this research can also help answer questions about how tiny particles called aerosols and other pollutants move around the world in the upper atmosphere.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/florida_dust.html
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>