Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saharan Dust Affects Thunderstorm Behavior in Florida

12.01.2005


Saharan Dust Blowing off Northwest Africa: This is an image of dust storms taken by NASA’s SeaWiFS satellite, taken on Feb. 28, 2000. Click on image to enlarge. Credit: NASA


A Microscopic Look at Dust: This particle of dust was magnified 12,000 times. Click on image to enlarge. Credit: USGS


People that live in Florida would expect the sands from the state beaches to blow into the air, and usually don’t think of the sands and dust from the Saharan Desert twirling around them. However, winds do carry the desert dust across the Atlantic Ocean, and scientists have been studying what they do to Florida Thunderstorms.

Scientists have discovered that these tiny particles of dust from the Saharan desert can affect thunderstorms in Florida in various ways. Dust affects the size of a thunderstorm’s "anvil" or top, the strength and number of warm updrafts (rising air), and the amount of rain that builds up and falls from the "heat generated" or convective thunderstorms.

Findings on the "Impact of Saharan Dust on Florida Storm Characteristics" were presented at the 2005 annual meeting of the American Meteorological Society on Jan. 11 at the San Diego Convention Center in San Diego, Calif. Susan C. van den Heever, Gustavo G. Carrio, William R. Cotton, Paul. J. DeMott and Anthony J. Prenni, all of Colorado State University, Fort Collins, Colo. co-authored a study which will appear in a forthcoming issue of the Journal of Atmospheric Sciences.



Working with her colleagues, van den Heever found that when Saharan dust is in the air, the thunderstorm anvils created by Florida’s convective thunderstorms tend to be a little smaller in area, but they tend to be better organized and thicker. This affects the amount of incoming sunlight and warmth reaching the ground, which can have effects on long-term climate. Over time, more sunlight would warm temperatures, less sunlight would cool temperatures.

The researchers also noticed that the updrafts of warm moist air, which build into thunderstorms, were stronger, and that there were more of these updrafts produced in the presence of the dust. These updrafts also carry tiny particles of pollution called aerosols up into all levels of the building thunderclouds.

Florida residents not only see more updrafts developing during dust events, but the dust affects the amount of rainfall that reaches the ground. Dust is an aerosol, and aerosols or little particles serve as the center or nuclei (called a cloud condensation nuclei) for cloud droplets to form around. These cloud droplets then combine to form raindrops which fall to the ground. As such, aerosols affect the production of rainfall.

There are three types of nuclei that Saharan dust can be. They can act as the center or nuclei for water vapor as a CCN, GCCN (Giant Cloud Condensation Nuclei) and IN (Ice Nuclei), where ice forms around a dust particle center. Van den Heever used a computer model to see how the atmosphere and clouds react with Saharan dust and without the desert dust. She then compared the results and found something unusual. The dust increased the number of centers or nuclei for raindrops and decreased the amount of rainfall at the Earth’s surface.

Nuclei or centers for droplets in a cloud compete for a limited amount of water vapor and liquid water to form raindrops. When there are many particles that act as a center for water vapor, there is less water for each center, resulting in smaller cloud droplets. As such, it is less likely that raindrops will form when droplets combine.
the stratosphere. Click on image to enlarge. Credit: NASA

The scientists also found that greater concentrations of Giant CCN (GCCN) as well as ice nuclei initially resulted in more rainfall reaching the surface. However, as the storms continued to develop, the two types of nuclei were removed from the storms by the precipitation and these nuclei then had less of an effect on the amount of rain reaching the surface. The scientists concluded that the overall effect of the Saharan dust on the surface rainfall was to reduce it.

The scientists used data from NASA’s CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment) field campaign to examine the affects of increased numbers of nuclei from the dust and pollutants. The purpose of the CRYSTAL-FACE mission was to study cirrus clouds to improve forecasts of future climate change.

The scientists concluded that Saharan dust can have a major impact on the amount of rainfall produced by thunderstorms in Florida. Also, because dust affects the size and thickness of thunderstorm anvils, the changes affect the amount of sunlight reaching Earth and being reflected by the clouds, which have implications for a changing climate. Finally, this research can also help answer questions about how tiny particles called aerosols and other pollutants move around the world in the upper atmosphere.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/florida_dust.html
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>