Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exploring Ocean Life and Color on the Internet


A new NASA Internet tool called "Giovanni" allows high school and college students and researchers to access and analyze satellite-derived ocean color data. Ocean color data provides students with information about ocean biology by looking at phytoplankton through changes in the color of the ocean surface.

"Ocean color" refers primarily to the measurement of the green pigment called chlorophyll, which is contained in phytoplankton. Phytoplankton are free-floating plants that are the foundation of the ocean’s food chain.

Giovanni stands for the "Goddard Earth Sciences Data and Information Services Center (GES DISC) Online Visualization and Analysis Infrastructure." NASA recently released three Giovanni tutorials demonstrating how students can conduct research with ocean color data. Use of such technical information was previously only possible for experienced scientists with advanced computer systems.

Scientists and software developers at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md., designed Giovanni. The initial release of this Web tool allows users to see ocean color data from the SeaWiFS satellite. Data from other ocean color missions will be added, including data from NASA’s Aqua satellite. Giovanni development is part of the Ocean Color Time-Series Project, headed by Dr. Watson Gregg, a NASA GSFC oceanographer.

Dr. James Acker of the GES DISC Oceans Data Team created three tutorials geared for high school and college level students. These tutorials help students identify research questions that can be answered with ocean color data.

"In creating these tutorials, I discovered features in the data that were a complete surprise," Acker said. "The tutorials show how to use Giovanni, and how students can use it to make new discoveries, potentially contributing to ocean science."

In the first tutorial, Dr. Acker looked at the chlorophyll patterns in the Gulf of Panama to see if they were influenced by El Nino/La Nina events. The Gulf of Panama has a strong seasonal pattern caused by strong winds that blow through the Panama Canal Zone in winter. The winds mix nutrients from deeper waters to the surface, and the nutrients promote phytoplankton growth. The strong 1997-1998 El Nino reduced the productivity, or how much phytoplankton grow in this region, as expected.

In the summer of 2001, however, there were short bursts of higher productivity not seen in other years. This unusual pattern may have been an early indicator of how the Gulf of Panama changed before the moderate El Nino event that occurred in 2002-2003.

The second tutorial investigated seasonal patterns of productivity in the Red Sea. There were two seasonal patterns in the Red Sea, one in the north and another in the south. Though these patterns are familiar to oceanographers, Giovanni provided another surprise. "I saw a very small area of relatively high chlorophyll concentrations near the Egyptian coast," Acker said. "At first it looked like a small river was entering the Red Sea. But there aren’t any rivers in this part of the desert." Further investigation indicated that this area was associated with a large coral reef complex on the Red Sea coast. A third tutorial examines the California coast near Monterey Bay, and discusses the influence of clouds on the data.

In the past, researchers had to download data files and analyze them on their own computing systems, a difficult and time-consuming process. Giovanni is one of the first demonstrations of new technology that will be improved in the future, making it much easier to use the data, including the multi-decade data sets that the Ocean Color Time-Series Project will create.

Cynthia O’Carroll | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>