Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring Ocean Life and Color on the Internet

15.12.2004


A new NASA Internet tool called "Giovanni" allows high school and college students and researchers to access and analyze satellite-derived ocean color data. Ocean color data provides students with information about ocean biology by looking at phytoplankton through changes in the color of the ocean surface.



"Ocean color" refers primarily to the measurement of the green pigment called chlorophyll, which is contained in phytoplankton. Phytoplankton are free-floating plants that are the foundation of the ocean’s food chain.

Giovanni stands for the "Goddard Earth Sciences Data and Information Services Center (GES DISC) Online Visualization and Analysis Infrastructure." NASA recently released three Giovanni tutorials demonstrating how students can conduct research with ocean color data. Use of such technical information was previously only possible for experienced scientists with advanced computer systems.


Scientists and software developers at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md., designed Giovanni. The initial release of this Web tool allows users to see ocean color data from the SeaWiFS satellite. Data from other ocean color missions will be added, including data from NASA’s Aqua satellite. Giovanni development is part of the Ocean Color Time-Series Project, headed by Dr. Watson Gregg, a NASA GSFC oceanographer.

Dr. James Acker of the GES DISC Oceans Data Team created three tutorials geared for high school and college level students. These tutorials help students identify research questions that can be answered with ocean color data.

"In creating these tutorials, I discovered features in the data that were a complete surprise," Acker said. "The tutorials show how to use Giovanni, and how students can use it to make new discoveries, potentially contributing to ocean science."

In the first tutorial, Dr. Acker looked at the chlorophyll patterns in the Gulf of Panama to see if they were influenced by El Nino/La Nina events. The Gulf of Panama has a strong seasonal pattern caused by strong winds that blow through the Panama Canal Zone in winter. The winds mix nutrients from deeper waters to the surface, and the nutrients promote phytoplankton growth. The strong 1997-1998 El Nino reduced the productivity, or how much phytoplankton grow in this region, as expected.

In the summer of 2001, however, there were short bursts of higher productivity not seen in other years. This unusual pattern may have been an early indicator of how the Gulf of Panama changed before the moderate El Nino event that occurred in 2002-2003.

The second tutorial investigated seasonal patterns of productivity in the Red Sea. There were two seasonal patterns in the Red Sea, one in the north and another in the south. Though these patterns are familiar to oceanographers, Giovanni provided another surprise. "I saw a very small area of relatively high chlorophyll concentrations near the Egyptian coast," Acker said. "At first it looked like a small river was entering the Red Sea. But there aren’t any rivers in this part of the desert." Further investigation indicated that this area was associated with a large coral reef complex on the Red Sea coast. A third tutorial examines the California coast near Monterey Bay, and discusses the influence of clouds on the data.

In the past, researchers had to download data files and analyze them on their own computing systems, a difficult and time-consuming process. Giovanni is one of the first demonstrations of new technology that will be improved in the future, making it much easier to use the data, including the multi-decade data sets that the Ocean Color Time-Series Project will create.

Cynthia O’Carroll | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/everydaylife/giovanni.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>