Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regional recovery more rapid following late Ordovician extinction

08.12.2004


The length of time necessary to recover from a mass extinction may seem like a problem from the past, but a team of Penn State researchers is investigating recovery from the second largest extinction in Earth’s history at the end of the Ordovician 443 million years ago and sees some parallels to today’s Earth.



"We are currently in an undeniable biotic crisis," says Andrew Z. Krug, graduate student in geosciences. "We are not just interested in what will disappear, but what will reappear and when the recovery will take place."

During the Ordovician, the majority of life was found in the seas. Scientists consider climate change, specifically widespread glaciation, as the trigger for this mass extinction.


The researchers report in this week’s on-line version of the Proceedings of the National Academy of Sciences, that "marine benthic diversity in Laurentia recovered to pre-extinction levels within 5 million years, which is nearly 15 million years sooner than suggested by global compilations."

Laurentia eventually became North America, however, during the Ordovician, it was located in the tropics and Pennsylvania was south of the equator. The researchers looked at the fossil record from Laurentia because large amounts of information are available in the Paleobiology Database (PBDB) sponsored by the National Science Foundation and housed at the National Center for Ecological Analysis and Synthesis. "Laurentia is well studied and the fact that it was tropical suggests there should be a lot of diversity," says Dr. Mark E. Patzkowsky, associate professor of geosciences.

Previously, investigations of extinctions have been on a global scale and most used a global database developed by the late Jack Sepkoski of the University of Chicago. This database lists the first appearance of an organism and the last appearance of an organism. "There is quantitative information missing from the global database," says Krug. "PBDB includes faunal lists, species occurrences and other information useful for standardization of sampling effort."

According to the global database, recovery from the Ordovician extinction took 15 to 20 million years. "We suspected that there might be a sampling issue," says Krug. "We standardized sample size and looked at how diversity recovers."

The researchers looked at 35 million years from the Ordovician to the Silurian and divided that into seven approximately equal time periods. They assembled lists of taxa – groups of related organisms – that were then standardized to account for low fossil counts in time periods for which few fossil bearing rocks are easily accessible and high fossil counts in time periods where the fossil bearing rocks are easily accessible and frequently collected.

Comparing the raw data with the standardized data, Krug and Patzkowsky saw a large difference in the number of years necessary for recovery after the extinction. The raw data for Laurentia showed a recovery period of 10 million years while the standardized data showed only 5 million years for recovery. "Based on other work, this suggests a good possibility that the region was operating differently than the globe as a whole," says Patzkowsky. "I would argue that the way the field considered the problem in the past was heavily influenced by the Sepkoski database. We show that at least in Laurentia, recovery was quicker than was thought globally."

Krug and Patzkowsky believe that the quicker recovery was caused by immigration of organisms from other areas of the globe. While this could account for the rapid rise of diversity after an extinction on a regional level, only an evolution of new organisms could account for a global diversity increase.

To see if other regions behave the same, Krug will look at faunal lists from Baltica – now Eastern Europe, Norway and Sweden – that was further south than Laurentia, Avalonia – now the United Kingdom and Nova Scotia – that was in a temperate area, and South Central Europe, which includes the western Mediterranean countries, that was even further south.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>