Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regional recovery more rapid following late Ordovician extinction

08.12.2004


The length of time necessary to recover from a mass extinction may seem like a problem from the past, but a team of Penn State researchers is investigating recovery from the second largest extinction in Earth’s history at the end of the Ordovician 443 million years ago and sees some parallels to today’s Earth.



"We are currently in an undeniable biotic crisis," says Andrew Z. Krug, graduate student in geosciences. "We are not just interested in what will disappear, but what will reappear and when the recovery will take place."

During the Ordovician, the majority of life was found in the seas. Scientists consider climate change, specifically widespread glaciation, as the trigger for this mass extinction.


The researchers report in this week’s on-line version of the Proceedings of the National Academy of Sciences, that "marine benthic diversity in Laurentia recovered to pre-extinction levels within 5 million years, which is nearly 15 million years sooner than suggested by global compilations."

Laurentia eventually became North America, however, during the Ordovician, it was located in the tropics and Pennsylvania was south of the equator. The researchers looked at the fossil record from Laurentia because large amounts of information are available in the Paleobiology Database (PBDB) sponsored by the National Science Foundation and housed at the National Center for Ecological Analysis and Synthesis. "Laurentia is well studied and the fact that it was tropical suggests there should be a lot of diversity," says Dr. Mark E. Patzkowsky, associate professor of geosciences.

Previously, investigations of extinctions have been on a global scale and most used a global database developed by the late Jack Sepkoski of the University of Chicago. This database lists the first appearance of an organism and the last appearance of an organism. "There is quantitative information missing from the global database," says Krug. "PBDB includes faunal lists, species occurrences and other information useful for standardization of sampling effort."

According to the global database, recovery from the Ordovician extinction took 15 to 20 million years. "We suspected that there might be a sampling issue," says Krug. "We standardized sample size and looked at how diversity recovers."

The researchers looked at 35 million years from the Ordovician to the Silurian and divided that into seven approximately equal time periods. They assembled lists of taxa – groups of related organisms – that were then standardized to account for low fossil counts in time periods for which few fossil bearing rocks are easily accessible and high fossil counts in time periods where the fossil bearing rocks are easily accessible and frequently collected.

Comparing the raw data with the standardized data, Krug and Patzkowsky saw a large difference in the number of years necessary for recovery after the extinction. The raw data for Laurentia showed a recovery period of 10 million years while the standardized data showed only 5 million years for recovery. "Based on other work, this suggests a good possibility that the region was operating differently than the globe as a whole," says Patzkowsky. "I would argue that the way the field considered the problem in the past was heavily influenced by the Sepkoski database. We show that at least in Laurentia, recovery was quicker than was thought globally."

Krug and Patzkowsky believe that the quicker recovery was caused by immigration of organisms from other areas of the globe. While this could account for the rapid rise of diversity after an extinction on a regional level, only an evolution of new organisms could account for a global diversity increase.

To see if other regions behave the same, Krug will look at faunal lists from Baltica – now Eastern Europe, Norway and Sweden – that was further south than Laurentia, Avalonia – now the United Kingdom and Nova Scotia – that was in a temperate area, and South Central Europe, which includes the western Mediterranean countries, that was even further south.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>