Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regional recovery more rapid following late Ordovician extinction

08.12.2004


The length of time necessary to recover from a mass extinction may seem like a problem from the past, but a team of Penn State researchers is investigating recovery from the second largest extinction in Earth’s history at the end of the Ordovician 443 million years ago and sees some parallels to today’s Earth.



"We are currently in an undeniable biotic crisis," says Andrew Z. Krug, graduate student in geosciences. "We are not just interested in what will disappear, but what will reappear and when the recovery will take place."

During the Ordovician, the majority of life was found in the seas. Scientists consider climate change, specifically widespread glaciation, as the trigger for this mass extinction.


The researchers report in this week’s on-line version of the Proceedings of the National Academy of Sciences, that "marine benthic diversity in Laurentia recovered to pre-extinction levels within 5 million years, which is nearly 15 million years sooner than suggested by global compilations."

Laurentia eventually became North America, however, during the Ordovician, it was located in the tropics and Pennsylvania was south of the equator. The researchers looked at the fossil record from Laurentia because large amounts of information are available in the Paleobiology Database (PBDB) sponsored by the National Science Foundation and housed at the National Center for Ecological Analysis and Synthesis. "Laurentia is well studied and the fact that it was tropical suggests there should be a lot of diversity," says Dr. Mark E. Patzkowsky, associate professor of geosciences.

Previously, investigations of extinctions have been on a global scale and most used a global database developed by the late Jack Sepkoski of the University of Chicago. This database lists the first appearance of an organism and the last appearance of an organism. "There is quantitative information missing from the global database," says Krug. "PBDB includes faunal lists, species occurrences and other information useful for standardization of sampling effort."

According to the global database, recovery from the Ordovician extinction took 15 to 20 million years. "We suspected that there might be a sampling issue," says Krug. "We standardized sample size and looked at how diversity recovers."

The researchers looked at 35 million years from the Ordovician to the Silurian and divided that into seven approximately equal time periods. They assembled lists of taxa – groups of related organisms – that were then standardized to account for low fossil counts in time periods for which few fossil bearing rocks are easily accessible and high fossil counts in time periods where the fossil bearing rocks are easily accessible and frequently collected.

Comparing the raw data with the standardized data, Krug and Patzkowsky saw a large difference in the number of years necessary for recovery after the extinction. The raw data for Laurentia showed a recovery period of 10 million years while the standardized data showed only 5 million years for recovery. "Based on other work, this suggests a good possibility that the region was operating differently than the globe as a whole," says Patzkowsky. "I would argue that the way the field considered the problem in the past was heavily influenced by the Sepkoski database. We show that at least in Laurentia, recovery was quicker than was thought globally."

Krug and Patzkowsky believe that the quicker recovery was caused by immigration of organisms from other areas of the globe. While this could account for the rapid rise of diversity after an extinction on a regional level, only an evolution of new organisms could account for a global diversity increase.

To see if other regions behave the same, Krug will look at faunal lists from Baltica – now Eastern Europe, Norway and Sweden – that was further south than Laurentia, Avalonia – now the United Kingdom and Nova Scotia – that was in a temperate area, and South Central Europe, which includes the western Mediterranean countries, that was even further south.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>