Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regional recovery more rapid following late Ordovician extinction

08.12.2004


The length of time necessary to recover from a mass extinction may seem like a problem from the past, but a team of Penn State researchers is investigating recovery from the second largest extinction in Earth’s history at the end of the Ordovician 443 million years ago and sees some parallels to today’s Earth.



"We are currently in an undeniable biotic crisis," says Andrew Z. Krug, graduate student in geosciences. "We are not just interested in what will disappear, but what will reappear and when the recovery will take place."

During the Ordovician, the majority of life was found in the seas. Scientists consider climate change, specifically widespread glaciation, as the trigger for this mass extinction.


The researchers report in this week’s on-line version of the Proceedings of the National Academy of Sciences, that "marine benthic diversity in Laurentia recovered to pre-extinction levels within 5 million years, which is nearly 15 million years sooner than suggested by global compilations."

Laurentia eventually became North America, however, during the Ordovician, it was located in the tropics and Pennsylvania was south of the equator. The researchers looked at the fossil record from Laurentia because large amounts of information are available in the Paleobiology Database (PBDB) sponsored by the National Science Foundation and housed at the National Center for Ecological Analysis and Synthesis. "Laurentia is well studied and the fact that it was tropical suggests there should be a lot of diversity," says Dr. Mark E. Patzkowsky, associate professor of geosciences.

Previously, investigations of extinctions have been on a global scale and most used a global database developed by the late Jack Sepkoski of the University of Chicago. This database lists the first appearance of an organism and the last appearance of an organism. "There is quantitative information missing from the global database," says Krug. "PBDB includes faunal lists, species occurrences and other information useful for standardization of sampling effort."

According to the global database, recovery from the Ordovician extinction took 15 to 20 million years. "We suspected that there might be a sampling issue," says Krug. "We standardized sample size and looked at how diversity recovers."

The researchers looked at 35 million years from the Ordovician to the Silurian and divided that into seven approximately equal time periods. They assembled lists of taxa – groups of related organisms – that were then standardized to account for low fossil counts in time periods for which few fossil bearing rocks are easily accessible and high fossil counts in time periods where the fossil bearing rocks are easily accessible and frequently collected.

Comparing the raw data with the standardized data, Krug and Patzkowsky saw a large difference in the number of years necessary for recovery after the extinction. The raw data for Laurentia showed a recovery period of 10 million years while the standardized data showed only 5 million years for recovery. "Based on other work, this suggests a good possibility that the region was operating differently than the globe as a whole," says Patzkowsky. "I would argue that the way the field considered the problem in the past was heavily influenced by the Sepkoski database. We show that at least in Laurentia, recovery was quicker than was thought globally."

Krug and Patzkowsky believe that the quicker recovery was caused by immigration of organisms from other areas of the globe. While this could account for the rapid rise of diversity after an extinction on a regional level, only an evolution of new organisms could account for a global diversity increase.

To see if other regions behave the same, Krug will look at faunal lists from Baltica – now Eastern Europe, Norway and Sweden – that was further south than Laurentia, Avalonia – now the United Kingdom and Nova Scotia – that was in a temperate area, and South Central Europe, which includes the western Mediterranean countries, that was even further south.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>