Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Satellites See El Nino Creep in From the Indian Ocean

02.12.2004


The image shows what happens when a very strong El Nino strikes surface waters in the Central equatorial Pacific Ocean. The sequence shows warm water anomalies (red) develop in the Central Pacific Ocean. Winds that normally blow in a westerly direction weaken allowing the easterly winds to push the warm water up against the South American Coast. Credit: NASA


Scientists studied the winds and rains in the eastern Indian Ocean for hints at developing El Ninos. They used that information to create an "Index" or gauge that accurately predicted the El Nino of 2002-2003.

El Nino is signaled by a warming of the ocean surface off the western coast of South America that occurs every 4 to 12 years when cold, nutrient-rich water does not come up from the ocean bottom. It causes die-offs of plankton and fish and affects Pacific jet stream winds, altering storm tracks and creating unusual weather patterns in various parts of the world. The researchers used the TRMM and QuikScat satellites to track wind, rainfall, and warmer sea surface temperatures moving from the Indian to the Pacific Ocean in early 2002, before the 2002-03 El Nino.

During the winter of 2001-2002, climate conditions in the eastern Indian Ocean changed dramatically. Westerly winds increased and the weather flip-flopped from dry to wet.



Scott Curtis, Assistant Professor at East Carolina University, Greenville, N.C., and Robert Adler, George Huffman and Guojun Gu, all of NASA’s Goddard Space Flight Center, Greenbelt, Md. used NASA’s Tropical Rainfall Measuring Mission (TRMM) and QuikScat satellite data ranging from November 2001 to March 2002. "This study expands on recent work linking rain and wind changes over the last 25 years to the development of El Ninos," Curtis said. The earlier study examined changes in rainfall from week to week, and the total amount of wintertime rainfall in key locations of the eastern Indian Ocean. They found these data points could be a sign of early shifts in climate leading to the development of El Ninos since 1979. The researchers then examined winds recreated by computer models, but did not find the same connections.

Curtis suggests that for the 1979-2002 period changes in rainfall in the eastern Indian Ocean are a better predictor for the onset of an El Nino than winds. Therefore, the El Nino Onset Index (EOI) was created using only rainfall data.

The scientists noticed the first weather system from the eastern Indian Ocean followed the Equator and the second traveled further south closer to Australia. In the second example, warm waters appeared first, followed by heavy rainfall in the eastern Indian Ocean. Then, strong westerly winds and a cooling of the sea surface developed. These events moved through the ocean area between Indonesia and Australia, suggesting a connection between rising air, wind, and sea surface temperatures over a period of days. These studies provided a basis for how changes in the East Indian Ocean are linked to following events in the Pacific Ocean, including the start of El Nino events.

There is a weak El Nino underway, according to the National Oceanic and Atmospheric Administration, which the EOI did not predict. Curtis explained that the EOI may not be sensitive enough to register weak episodes. In addition, the current El Nino is not basin-wide, as the far eastern Pacific Ocean is cooler than normal.

In the future, NASA will launch the Global Precipitation Measurement Mission which will contribute to the EOI, as TRMM does currently.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/goddard
http://www.nasa.gov/vision/earth/lookingatearth/elnino_ocean.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>