Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to measure ancient land elevation developed by Field Museum scientist

29.11.2004


Holy Grail of geology found: Measuring elevation over geological eras



A Field Museum scientist has developed a novel way to determine land elevation as continents moved around the Earth through geological ages. Knowing how high mountains and plateaus were in the past will help scientists to study how our climate system evolved. "Understanding the past elevation of land surfaces, also known as paleoelevation, has been one of geology’s Holy Grails," said Jennifer McElwain, PhD, Associate Curator of Paleobotany at Chicago’s Field Museum and sole author of the research to be published in Geology’s December issue. "This is the first paleobotanical method that works globally and is independent of long-term climate change.

"The new method will help us to understand the rate at which some of the Earth’s most important mountains have uplifted," she added. "It will also show how the process of mountain building influenced climatic patterns as well as plant and animal evolution."


The new method of paleoelevation involves counting the stomata on leaves of plants going back as far as 65 million years ago. Stomata are minute openings on the surface of leaves through which plants absorb gases, including carbon dioxide, which plants need for photosynthesis. Anyone who has climbed a mountain knows that the air gets "thinner" as you climb higher. As with oxygen, carbon dioxide is less concentrated at higher elevations. Therefore, the higher the elevation, the more stomata per square inch of leaf surface a plant would need to survive. By simply counting the number of fossil stomata, Dr. McElwain can estimate how much carbon dioxide was in the air when the fossil leaf developed. From that, she can estimate the elevation at which the fossil plant once lived.

Dr. McElwain used historical and modern collections of California Black Oak (Quercus kelloggii) leaves for her study because the California Black Oak grows at an unusually wide range of elevations from 200 to 8,000 feet (60 to 2,440 meters). The historical leaves were collected by botanists in the 1930s and stored within herbarium collections of the Field Museum and the University of California, Berkeley.

The research was conducted with financial support from the National Science Foundation.

This new method of estimating land elevation has an average error of about 980 feet (300 meters) – but as low as 330 feet (100 meters). Such an error rate is much lower than the error rate of existing paleoelevation methods, all of which have significant limitations. This method can be used for any area where suitable plant specimens can be found.

High mountains and plateaus can act as important barriers to plant and animal migration and dispersal resulting in isolation of plant and animal populations on opposite sides of mountain chains. Therefore, knowing exactly when in the geological past the mountains of today’s world reached their current elevations is relevant to our understanding of plant and animal evolution since isolation is an important mechanism in the formation of species.

In addition, high mountains and large plateaus (such as those in Tibet and Colorado today) have always had a big influence on climate by altering patterns of atmospheric circulation. Because this new method is independent of variations in climate, it will allow scientists to identify the impact of elevation on global climate patterns and factor elevation into the study of global climate change.

This research also highlights the importance of museum collections, Dr. McElwain noted. "You never know what information is locked up in specimens or artifacts kept at a natural history museum like ours until someone develops a new method, tool or technology to draw out those secrets."

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>