Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to measure ancient land elevation developed by Field Museum scientist

29.11.2004


Holy Grail of geology found: Measuring elevation over geological eras



A Field Museum scientist has developed a novel way to determine land elevation as continents moved around the Earth through geological ages. Knowing how high mountains and plateaus were in the past will help scientists to study how our climate system evolved. "Understanding the past elevation of land surfaces, also known as paleoelevation, has been one of geology’s Holy Grails," said Jennifer McElwain, PhD, Associate Curator of Paleobotany at Chicago’s Field Museum and sole author of the research to be published in Geology’s December issue. "This is the first paleobotanical method that works globally and is independent of long-term climate change.

"The new method will help us to understand the rate at which some of the Earth’s most important mountains have uplifted," she added. "It will also show how the process of mountain building influenced climatic patterns as well as plant and animal evolution."


The new method of paleoelevation involves counting the stomata on leaves of plants going back as far as 65 million years ago. Stomata are minute openings on the surface of leaves through which plants absorb gases, including carbon dioxide, which plants need for photosynthesis. Anyone who has climbed a mountain knows that the air gets "thinner" as you climb higher. As with oxygen, carbon dioxide is less concentrated at higher elevations. Therefore, the higher the elevation, the more stomata per square inch of leaf surface a plant would need to survive. By simply counting the number of fossil stomata, Dr. McElwain can estimate how much carbon dioxide was in the air when the fossil leaf developed. From that, she can estimate the elevation at which the fossil plant once lived.

Dr. McElwain used historical and modern collections of California Black Oak (Quercus kelloggii) leaves for her study because the California Black Oak grows at an unusually wide range of elevations from 200 to 8,000 feet (60 to 2,440 meters). The historical leaves were collected by botanists in the 1930s and stored within herbarium collections of the Field Museum and the University of California, Berkeley.

The research was conducted with financial support from the National Science Foundation.

This new method of estimating land elevation has an average error of about 980 feet (300 meters) – but as low as 330 feet (100 meters). Such an error rate is much lower than the error rate of existing paleoelevation methods, all of which have significant limitations. This method can be used for any area where suitable plant specimens can be found.

High mountains and plateaus can act as important barriers to plant and animal migration and dispersal resulting in isolation of plant and animal populations on opposite sides of mountain chains. Therefore, knowing exactly when in the geological past the mountains of today’s world reached their current elevations is relevant to our understanding of plant and animal evolution since isolation is an important mechanism in the formation of species.

In addition, high mountains and large plateaus (such as those in Tibet and Colorado today) have always had a big influence on climate by altering patterns of atmospheric circulation. Because this new method is independent of variations in climate, it will allow scientists to identify the impact of elevation on global climate patterns and factor elevation into the study of global climate change.

This research also highlights the importance of museum collections, Dr. McElwain noted. "You never know what information is locked up in specimens or artifacts kept at a natural history museum like ours until someone develops a new method, tool or technology to draw out those secrets."

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>