Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find frozen north may accelerate climate change

14.10.2004


The UF study suggests that climate warming in the arctic tundra may cause the release of much more carbon dioxide than previously expected. Even though plants grew more, and more carbon was stored in plants and in the surface of the soil, the whole ecosystem did not gain carbon. Instead, it lost a tremendous amount from the deepest soil layers, probably because increased nitrogen accelerated the breakdown of soil carbon. Credit: Ted Schuur


This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging Spectroradiometer on August 16, 2000. The Refuge encompasses a variety of arctic and subarctic ecosystems, including coastal lagoons, barrier islands, arctic tundra, and mountainous terrain. Credit: NASA/GSFC/LaRC/JPL, MISR Team


NASA-funded researchers have found that despite their sub-zero temperatures, a warming north may add more carbon to the atmosphere from soil, accelerating climate warming further.

"The 3 to 7 degree Fahrenheit rise in temperature predicted by global climate computer models could cause the breakdown of the arctic tundra’s vast store of soil carbon," said Michelle Mack, an ecologist at the University of Florida, Gainsville, Fla., and one of the lead researchers on a study published in last week’s issue of Nature. It would release more of the greenhouse gas carbon dioxide into the air than plants are capable of taking in.

The study results suggest that climate warming in the arctic tundra may cause the release of much more carbon dioxide than previously expected. This type of positive feedback will make the Earth’s climate change even more rapidly. The findings were collected in a 20-year experiment of the effects of fertilization on the arctic tundra at the Arctic Long-Term Ecological Research site near Toolik Lake, Alaska. The National Science Foundation and NASA provided funding for the research.



One-third of the Earth’s soil carbon is locked in northern latitudes because low temperatures and water-saturated soil slow the decomposition of organic matter by bacteria, fungi and other organisms. Scientists from UF, the University of Alaska and the Marine Biological Laboratory at Woods Hole, Mass., added nitrogen and phosphorous fertilizer to the soil to simulate the release of nutrients from decomposing soil organic matter.

The scientists hypothesized the fertilizer would stimulate plant growth, remove carbon from the atmosphere and eventually add it to the soil as plants shed dead leaves and roots over time. Thus, the whole ecosystem was thought to be gaining carbon after fertilization. Mack and her colleagues found exactly the opposite. Even though plants grew more, and more carbon was stored in plants and in the surface of the soil, the whole ecosystem did not gain carbon. "Instead, it lost a tremendous amount from the deepest soil layers, probably because increased nitrogen accelerated the decomposition of organic matter by soil organisms, thereby releasing carbon dioxide."

The results could have implications for ecosystems in other regions of the world as well, said Edward Schuur, a UF ecologist who co-led the project. Places such as the northeastern U.S. and Europe, where acid rain has increased the amount of nitrogen deposited into the ecosystem from the atmosphere, also could experience an increased loss of soil carbon in response to higher nitrogen inputs. "It may be that not just arctic ecosystems, but those in other parts of the world will have a similar decomposition response to increased nitrogen," Schuur speculated. "Increased nitrogen levels are thought to have caused trees to grow more in many places. These places may experience the same kinds of effects below ground that we’ve noted."

Few previous studies have assessed fertilization effects on soil carbon pools because these effects are difficult to detect over short periods of time. The long-term nature of the experiment makes it unique among studies of arctic ecosystems, and makes the effects of fertilization large enough to detect.

It has long been thought that global warming would have two opposing effects on arctic soils. First, would increase the breakdown of soil organic matter, releasing carbon dioxide, the major cause of warming, into the atmosphere. Second, the breakdown of soil organic matter would liberate nutrients that would enhance rates of plant growth, thereby removing carbon dioxide from the atmosphere.

Peter Vitousek, a professor of biological sciences at Stanford University, said "This work demonstrated beautifully that there is another, even stronger effect, that an increase in nutrients also enhances the breakdown of soil organic matter." The overall effect of warming especially in the Arctic will be to release carbon dioxide to the atmosphere, enhancing the likelihood of further warming.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>